, Volume 248, Issue 5, pp 1231–1247 | Cite as

Genome-wide identification and characterization of ALTERNATIVE OXIDASE genes and their response under abiotic stresses in Camellia sinensis (L.) O. Kuntze

  • Chang-Qing Ding
  • Sophia Ng
  • Lu Wang
  • Yu-Chun Wang
  • Na-Na Li
  • Xin-Yuan Hao
  • Jian-Ming Zeng
  • Xin-Chao WangEmail author
  • Ya-Jun YangEmail author
Original Article


Main conclusion

Four typical ALTERNATIVE OXIDASE genes have been identified in tea plants, and their sequence features and gene expression profiles have provided useful information for further studies on function and regulation.


Alternative oxidase (AOX) is a terminal oxidase located in the respiratory electron transport chain. AOX catalyzes the oxidation of quinol and the reduction of oxygen into water. In this study, a genome-wide search and subsequent DNA cloning were performed to identify and characterize AOX genes in tea plant (Camellia sinensis (L.) O. Kuntze cv. Longjing43). Our results showed that tea plant possesses four AOX genes, i.e., CsAOX1a, CsAOX1d, CsAOX2a and CsAOX2b. Gene structure and protein sequence analyses revealed that all CsAOXs share a four-exon/three-intron structure with highly conserved regions and amino acid residues, which are necessary for AOX secondary structures, catalytic activities and post-translational regulations. All CsAOX were shown to localize in mitochondria using the green fluorescent protein (GFP)-targeting assay. Both CsAOX1a and CsAOX1d were induced by cold, salt and drought stresses, and with different expression patterns in young and mature leaves. Reactive oxygen species (ROS) accumulated strongly after 72 and 96 h cold treatments in both young and mature leaves, while the polyphenol and total catechin decreased significantly only in mature leaves. In comparison to AtAOX1a in Arabidopsis thaliana, CsAOX1a lost almost all of the stress-responsive cis-acting regulatory elements in its promoter region (1500 bp upstream), but possesses a flavonoid biosynthesis-related MBSII cis-acting regulatory element. These results suggest a link between CsAOX1a function and the metabolism of some secondary metabolites in tea plant. Our studies provide a basis for the further elucidation of the biological function and regulation of the AOX pathway in tea plants.


CsAOX Cold stress Flavonoid biosynthesis Reactive oxygen species Secondary metabolisms Tea plant 



Alternative oxidase


Reactive oxygen species



This work was supported by the Central Public-interest Scientific Institution Basal Research Fund (1610212017003), the Earmarked Fund for China Agriculture Research System (CARS-19) and the Major Project of Agricultural Science and Technology in Breeding of Tea Plant Variety in Zhejiang Province (2016C02053-4). SN is supported by the European Molecular Biology Organization (EMBO) Long–term Fellowship (ALTF1239-2015) and Marie Curie Actions, which are funded by the European Commission (LTFCOFUND2013, GA-2013-609409).

Compliance with ethical standards

Conflict of interest

The authors declare no competing financial interest.

Supplementary material

425_2018_2974_MOESM1_ESM.docx (15 kb)
Supplementary material 1 (DOCX 14 kb)
425_2018_2974_MOESM2_ESM.docx (14 kb)
Supplementary material 2 (DOCX 14 kb)


  1. Abe F, Saito K, Miura K, Toriyama K (2002) A single nucleotide polymorphism in the alternative oxidase gene among rice varieties differing in low temperature tolerance. FEBS Lett 527(1–3):181–185CrossRefPubMedCentralGoogle Scholar
  2. Amirsadeghi S, Robson CA, McDonald AE, Vanlerberghe GC (2006) Changes in plant mitochondrial electron transport alter cellular levels of reactive oxygen species and susceptibility to cell death signaling molecules. Plant Cell Physiol 47(11):1509–1519CrossRefPubMedCentralGoogle Scholar
  3. Arnholdt-Schmitt B, Costa JH, de Melo DF (2006) AOX-a functional marker for efficient cell reprogramming under stress? Trends Plant Sci 11(6):281–287CrossRefPubMedCentralGoogle Scholar
  4. Bai YC, Li CL, Zhang JW, Li SJ, Luo XP, Yao HP, Chen H, Zhao HX, Park SU, Wu Q (2014) Characterization of two tartary buckwheat R2R3-MYB transcription factors and their regulation of proanthocyanidin biosynthesis. Physiol Plant 152(3):431–440CrossRefPubMedCentralGoogle Scholar
  5. Banerjee B (1992) Botanical classification of tea, Tea. Springer, BerlinGoogle Scholar
  6. Bendall DS, Bonner WD (1971) Cyanide-insensitive respiration in plant mitochondria. Plant Physiol 47(2):236–245CrossRefPubMedCentralGoogle Scholar
  7. Berthold DA, Stenmark P (2003) Membrane-bound diiron carboxylate proteins. Annu Rev Plant Bio 54(1):497–517CrossRefGoogle Scholar
  8. Cavalcanti JH, Oliveira GM, Saraiva KD, Torquato JP, Maia IG, de Melo DF, Costa JH (2013) Identification of duplicated and stress-inducible Aox2b gene co-expressed with Aox1 in species of the Medicago genus reveals a regulation linked to gene rearrangement in leguminous genomes. J Plant Physiol 170(18):1609–1619CrossRefPubMedCentralGoogle Scholar
  9. Clifton R, Lister R, Parker KL, Sappl PG, Elhafez D, Millar AH, Day DA, Whelan J (2005) Stress-induced co-expression of alternative respiratory chain components in Arabidopsis thaliana. Plant Mol Biol 58(2):193–212CrossRefPubMedCentralGoogle Scholar
  10. Clifton R, Millar AH, Whelan J (2006) Alternative oxidases in Arabidopsis: a comparative analysis of differential expression in the gene family provides new insights into function of non-phosphorylating bypasses. Biochim Biophys Acta Bioenerg 1757(7):730–741CrossRefGoogle Scholar
  11. Considine MJ, Holtzapffel RC, Day DA, Whelan J, Millar AH (2002) Molecular distinction between alternative oxidase from monocots and dicots. Plant Physiol 129(3):949–953CrossRefPubMedCentralGoogle Scholar
  12. Costa JH, Mota EF, Cambursano MV, Lauxmann MA, de Oliveira LM, Silva Lima MG, Orellano EG, Fernandes de Melo D (2010) Stress-induced co-expression of two alternative oxidase (VuAox1 and 2b) genes in Vigna unguiculata. J Plant Physiol 167(7):561–570CrossRefPubMedCentralGoogle Scholar
  13. Costa JH, McDonald AE, Arnholdt-Schmitt B, Fernandes de Melo D (2014) A classification scheme for alternative oxidases reveals the taxonomic distribution and evolutionary history of the enzyme in angiosperms. Mitochondrion 19:172–183CrossRefPubMedCentralGoogle Scholar
  14. Costa JH, Santos CP, de Sousa ELB, Moreira Netto AN, Saraiva KD, Arnholdt-Schmitt B (2017) In silico identification of alternative oxidase 2 (AOX2) in monocots: a new evolutionary scenario. J Plant Physiol 210:58–63CrossRefPubMedCentralGoogle Scholar
  15. Curtis MD, Grossniklaus U (2003) A gateway cloning vector set for high-throughput functional analysis of genes in planta. Plant Physiol 133(2):462–469CrossRefPubMedCentralGoogle Scholar
  16. De Clercq I, Vermeirssen V, Van Aken O, Vandepoele K, Murcha MW, Law SR, Inze A, Ng S, Ivanova A, Rombaut D, van de Cotte B, Jaspers P, Van de Peer Y, Kangasjarvi J, Whelan J, Van Breusegem F (2013) The membrane-bound NAC transcription factor ANAC013 functions in mitochondrial retrograde regulation of the oxidative stress response in Arabidopsis. Plant Cell 25(9):3472–3490CrossRefPubMedCentralGoogle Scholar
  17. Del-Saz NF, Ribas-Carbo M, McDonald AE, Lambers H, Fernie AR, Florez-Sarasa I (2017) An in vivo perspective of the role (s) of the alternative oxidase pathway. Trends Plant Sci 23(3):206–219CrossRefPubMedCentralGoogle Scholar
  18. Giraud E, Ho LH, Clifton R, Carroll A, Estavillo G, Tan YF, Howell KA, Ivanova A, Pogson BJ, Millar AH, Whelan J (2008) The absence of ALTERNATIVE OXIDASE1a in Arabidopsis results in acute sensitivity to combined light and drought stress. Plant Physiol 147(2):595–610CrossRefPubMedCentralGoogle Scholar
  19. Giraud E, Van Aken O, Ho LH, Whelan J (2009) The transcription factor ABI4 is a regulator of mitochondrial retrograde expression of ALTERNATIVE OXIDASE1a. Plant Physiol 150(3):1286–1296CrossRefPubMedCentralGoogle Scholar
  20. Grant N, Onda Y, Kakizaki Y, Ito K, Watling J, Robinson S (2009) Two Cys or not two Cys? That is the question; alternative oxidase in the thermogenic plant sacred lotus. Plant Physiol 150(2):987–995CrossRefPubMedCentralGoogle Scholar
  21. Gray GR, Maxwell DP, Villarimo AR, Mcintosh L (2004) Mitochondria/nuclear signaling of alternative oxidase gene expression occurs through distinct pathways involving organic acids and reactive oxygen species. Plant Cell Rep 23(7):497–503CrossRefPubMedCentralGoogle Scholar
  22. Hao XY, Horvath DP, Chao WS, Yang YJ, Wang XC, Xiao B (2014) Identification and evaluation of reliable reference genes for quantitative real-time PCR analysis in tea plant (Camellia sinensis (L.) O. Kuntze). Int J Mol Sci 15(12):22155–22172CrossRefPubMedCentralGoogle Scholar
  23. Hoagland DR, Arnon DI (1950) The water-culture method for growing plants without soil. Calif Agric Exp Stn Circ 347(5406):357–359Google Scholar
  24. Holtzapffel RC, Castelli J, Finnegan PM, Millar AH, Whelan J, Day DA (2003) A tomato alternative oxidase protein with altered regulatory properties. Biochim Biophys Acta 1606(1–3):153–162CrossRefPubMedCentralGoogle Scholar
  25. Hu B, Jin JP, Guo AY, Zhang H, Luo JC, Gao G (2015) GSDS2.0: an upgraded gene feature visualization server. Bioinformatics 31(8):1296–1297CrossRefGoogle Scholar
  26. Ito Y, Saisho D, Nakazono M, Tsutsumi N, Hirai A (1997) Transcript levels of tandem-arranged alternative oxidase genes in rice are increased by low temperature. Gene 203(2):121–129CrossRefPubMedCentralGoogle Scholar
  27. Kato M, Kanehara T, Shimizu H, Suzuki T, Gillies FM, Crozier A, Ashihara H (1996) Caffeine biosynthesis in young leaves of Camellia sinensis: in vitro studies on N-methyltransferase activity involved in the conversion of xanthosine to caffeine. Physiol Plant 98(3):629–636CrossRefGoogle Scholar
  28. Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33(7):1870–1874CrossRefGoogle Scholar
  29. Lescot M, Dehais P, Thijs G, Marchal K, Moreau Y, Van de Peer Y, Rouze P, Rombauts S (2002) PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res 30(1):325–327CrossRefPubMedCentralGoogle Scholar
  30. Li CR, Liang DD, Li J, Duan YB, Li H, Yang YC, Qin RY, Li L, Wei PC, Yang JB (2013) Unravelling mitochondrial retrograde regulation in the abiotic stress induction of rice ALTERNATIVE OXIDASE 1 genes. Plant, Cell Environ 36(4):775–788CrossRefGoogle Scholar
  31. Li CF, Zhu Y, Yu Y, Zhao QY, Wang SJ, Wang XC, Yao MZ, Luo D, Li X, Chen L, Yang YJ (2015) Global transcriptome and gene regulation network for secondary metabolite biosynthesis of tea plant (Camellia sinensis). BMC Genomics 16(1):560CrossRefPubMedCentralGoogle Scholar
  32. Li NN, Yue C, Cao HL, Qian WJ, Hao XY, Wang YC, Wang L, Ding CQ, Wang XC, Yang YJ (2018) Transcriptome sequencing dissection of the mechanisms underlying differential cold sensitivity in young and mature leaves of the tea plant (Camellia sinensis). J Plant Physiol 224–225:144–155PubMedPubMedCentralGoogle Scholar
  33. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(T)(-Delta Delta C) method. Methods 25(4):402–408CrossRefGoogle Scholar
  34. McDonald AE (2008) Alternative oxidase: an inter-kingdom perspective on the function and regulation of this broadly distributed ‘cyanide-resistant’ terminal oxidase. Funct Plant Biol 35(7):535–552CrossRefGoogle Scholar
  35. McDonald AE (2009) Alternative oxidase: what information can protein sequence comparisons give us? Physiol Plant 137(4):328–341CrossRefPubMedCentralGoogle Scholar
  36. Millar AH, Whelan J, Soole KL, Day DA (2011) Organization and regulation of mitochondrial respiration in plants. Annu Rev Plant Biol 62(1):79CrossRefPubMedCentralGoogle Scholar
  37. Mondal TK, Bhattacharya A, Laxmikumaran M, Ahuja PS (2004) Recent advances of tea (Camellia sinensis) biotechnology. Plant Cell Tiss Org 76(3):195–254CrossRefGoogle Scholar
  38. Moore AL, Shiba T, Young L, Harada S, Kita K, Ito K (2013) Unraveling the heater: new insights into the structure of the alternative oxidase. Annu Rev Plant Biol 64(1):637–663CrossRefGoogle Scholar
  39. Nakamura K, Sakamoto K, Kido Y, Fujimoto Y, Suzuki T, Suzuki M, Yabu Y, Ohta N, Tsuda A, Onuma M, Kita K (2005) Mutational analysis of the Trypanosoma vivax alternative oxidase: the E(X)(6)Y motif is conserved in both mitochondrial alternative oxidase and plastid terminal oxidase and is indispensable for enzyme activity. Biochem Biophys Res Co 334(2):593–600CrossRefGoogle Scholar
  40. Nelson BK, Cai X, Nebenführ A (2007) A multicolored set of in vivo organelle markers for co-localization studies in Arabidopsis and other plants. Plant J 51(6):1126–1136CrossRefGoogle Scholar
  41. Ng S, Ivanova A, Duncan O, Law SR, Van Aken O, De Clercq I, Wang Y, Carrie C, Xu L, Kmiec B, Walker H, Van Breusegem F, Whelan J, Giraud E (2013) A membrane-bound NAC transcription factor, ANAC017, mediates mitochondrial retrograde signaling in Arabidopsis. Plant Cell 25(9):3450–3471CrossRefPubMedCentralGoogle Scholar
  42. Nishigaki I, Thambi PT, Kuttan R, Chacko SM (2010) Beneficial effects of green tea: a literature review. Chin Med 5(1):13CrossRefPubMedCentralGoogle Scholar
  43. Pennisi R, Salvi D, Brandi V, Angelini R, Ascenzi P, Polticelli F (2016) Molecular evolution of alternative oxidase proteins: a phylogenetic and structure modeling approach. J Mol Evol 82(4–5):207–218CrossRefPubMedCentralGoogle Scholar
  44. Polidoros AN, Mylona PV, Pasentsis K, Scandalios JG, Tsaftaris AS (2005) The maize alternative oxidase 1a (Aox1a) gene is regulated by signals related to oxidative stress. Redox Rep 10(2):71–78CrossRefPubMedCentralGoogle Scholar
  45. Polidoros AN, Mylona PV, Arnholdt-Schmitt B (2009) AOX gene structure, transcript variation and expression in plants. Physiol Plant 137(4):342–353CrossRefPubMedCentralGoogle Scholar
  46. Pu XJ, Lv X, Lin HH (2015) Unraveling the evolution and regulation of the alternative oxidase gene family in plants. Dev Genes Evol 225(6):331–339CrossRefPubMedCentralGoogle Scholar
  47. Punyasiri PA, Abeysinghe IS, Kumar V, Treutter D, Duy D, Gosch C, Martens S, Forkmann G, Fischer TC (2004) Flavonoid biosynthesis in the tea plant Camellia sinensis: Properties of enzymes of the prominent epicatechin and catechin pathways. Arch Biochem Biophys 431(1):22–30CrossRefPubMedCentralGoogle Scholar
  48. Rhoads DM, Mcintosh L (1991) Isolation and characterization of a cDNA clone encoding an alternative oxidase protein of Sauromatum guttatum (Schott). Proc Natl Acad Sci USA 88(6):2122–2126CrossRefPubMedCentralGoogle Scholar
  49. Rogov AG, Sukhanova EI, Uralskaya LA, Aliverdieva DA, Zvyagilskaya RA (2014) Alternative oxidase: distribution, induction, properties, structure, regulation, and functions. Biochemistry 79(13):1615–1634PubMedPubMedCentralGoogle Scholar
  50. Saha B, Borovskii G, Panda SK (2016) Alternative oxidase and plant stress tolerance. Plant Signaling Behav 11(12):e1256530CrossRefGoogle Scholar
  51. Selinski J, Hartmann A, Kordes A, Deckers-Hebestreit G, Whelan J, Scheibe R (2017) Analysis of post-translational activation of alternative oxidase isoforms. Plant Physiol 174(4):2113–2127CrossRefPubMedCentralGoogle Scholar
  52. Selinski J, Scheibe R, Day DA, Whelan J (2018) Alternative oxidase is positive for plant performance. Trends Plant Sci 23(7):588–597CrossRefPubMedCentralGoogle Scholar
  53. Sweetman C, Soole KL, Jenkins CLD, Day DA (2018) Genomic structure and expression of alternative oxidase genes in legumes. Plant Cell Environ. CrossRefPubMedPubMedCentralGoogle Scholar
  54. Tan LQ, Zhang CC, Qi GN, Wang LY, Wei K, Chen SX, Zou Y, Wu LY, Cheng H (2015) Heterozygosities and genetic relationship of tea cultivars revealed by simple sequence repeat markers and implications for breeding and genetic mapping programs. Genet Mol Res 14(1):1557–1565CrossRefPubMedCentralGoogle Scholar
  55. Thordal-Christensen H, Zhang ZG, Wei YD, Collinge DB (1997) Subcellular localization of H2O2 in plants. H2O2 accumulation in papillae and hypersensitive response during the barley-powdery mildew interaction. Plant J 11(6):1187–1194CrossRefGoogle Scholar
  56. Umbach AL, Siedow JN (1993) Covalent and noncovalent dimers of the cyanide-resistant alternative oxidase protein in higher plant mitochondria and their relationship to enzyme activity. Plant Physiol 103(3):845–854CrossRefPubMedCentralGoogle Scholar
  57. Umbach AL, Siedow JN (1996) The reaction of the soybean cotyledon mitochondrial cyanide-resistant oxidase with sulfhydryl reagents suggests that alpha-keto acid activation involves the formation of a thiohemiacetal. J Biol Chem 271(40):25019–25026CrossRefPubMedCentralGoogle Scholar
  58. Umbach AL, Ng VS, Siedow JN (2006) Regulation of plant alternative oxidase activity: a tale of two cysteines. Biochim Biophys Acta 1757(2):135–142CrossRefPubMedCentralGoogle Scholar
  59. Upadhyaya H, Panda SK (2013) Abiotic stress responses in tea (Camellia sinensis L (O) Kuntze): an overview. Rev Agric Sci 1:1–10Google Scholar
  60. Van Aken O, Giraud E, Clifton R, Whelan J (2009) Alternative oxidase: a target and regulator of stress responses. Physiol Plant 137(4):354–361CrossRefPubMedCentralGoogle Scholar
  61. Van Aken O, Zhang B, Law S, Narsai R, Whelan J (2013) AtWRKY40 and AtWRKY63 modulate the expression of stress-responsive nuclear genes encoding mitochondrial and chloroplast proteins. Plant Physiol 162(1):254–271CrossRefPubMedCentralGoogle Scholar
  62. Vanlerberghe GC (2013) Alternative oxidase: a mitochondrial respiratory pathway to maintain metabolic and signaling homeostasis during abiotic and biotic stress in plants. Int J Mol Sci 14(4):6805–6847CrossRefPubMedCentralGoogle Scholar
  63. Vanlerberghe GC, Mcintosh L (1997) ALTERNATIVE OXIDASE: from gene to function. Annu Rev Plant Physiol Plant Mol Biol 48(48):703–734CrossRefPubMedCentralGoogle Scholar
  64. Vishwakarma A, Tetali SD, Selinski J, Scheibe R, Padmasree K (2015) Importance of the alternative oxidase (AOX) pathway in regulating cellular redox and ROS homeostasis to optimize photosynthesis during restriction of the cytochrome oxidase pathway in Arabidopsis thaliana. Ann Bot 116(4):555–569CrossRefPubMedCentralGoogle Scholar
  65. Wang Y, Jiang CJ, Zhang HY (2008) Observation on the self-incompatibility of pollen tubes in self-pollination of tea plant in style in vivo. J Tea Sci Res 28(6):429–435Google Scholar
  66. Wang KB, Liu F, Liu ZH, Huang JA, Xu ZX, Li YH, Chen JH, Gong YS, Yang XH (2011) Comparison of catechins and volatile compounds among different types of tea using high performance liquid chromatograph and gas chromatograph mass spectrometer. Int J Food Sci Tech 46(7):1406–1412CrossRefGoogle Scholar
  67. Wang L, Yue C, Cao HL, Zhou YH, Zeng JM, Yang YJ, Wang XC (2014) Biochemical and transcriptome analyses of a novel chlorophyll-deficient chlorina tea plant cultivar. BMC Plant Biol 14(1):352CrossRefPubMedCentralGoogle Scholar
  68. Wei C, Yang H, Wang S, Zhao J, Liu C, Gao L, Xia E, Lu Y, Tai Y, She G, Sun J, Cao H, Tong W, Gao Q, Li Y, Deng W, Jiang X, Wang W, Chen Q, Zhang S, Li H, Wu J, Wang P, Li P, Shi C, Zheng F, Jian J, Huang B, Shan D, Shi M, Fang C, Yue Y, Li F, Li D, Wei S, Han B, Jiang C, Yin Y, Xia T, Zhang Z, Bennetzen JL, Zhao S, Wan X (2018) Draft genome sequence of Camellia sinensis var. sinensis provides insights into the evolution of the tea genome and tea quality. Proc Natl Acad Sci USA 115(18):E4151–E4158. CrossRefPubMedPubMedCentralGoogle Scholar
  69. Xia EH, Zhang HB, Sheng J, Li K, Zhang QJ, Kim C, Zhang Y, Liu Y, Zhu T, Li W, Huang H, Tong Y, Nan H, Shi C, Shi C, Jiang JJ, Mao SY, Jiao JY, Zhang D, Zhao Y, Zhao YJ, Zhang LP, Liu YL, Liu BY, Yu Y, Shao SF, Ni DJ, Eichler EE, Gao LZ (2017) The tea tree genome provides insights into tea flavor and independent evolution of caffeine biosynthesis. Mol Plant 10(6):866–877CrossRefGoogle Scholar
  70. Yaginuma S, Shiraishi T, Igarashi K (2003) Developmental transition of the flavonoid contents in safflower leaves during stress-loaded cultivation. Biosci Biotech Biochem 67(8):1691–1698CrossRefGoogle Scholar
  71. Yoo SD, Cho YH, Sheen J (2007) Arabidopsis mesophyll protoplasts: a versatile cell system for transient gene expression analysis. Nat Protoc 2(7):1565–1572CrossRefGoogle Scholar
  72. Zhang X, Ivanova A, Vandepoele K, Radomiljac J, Van de Velde J, Berkowitz O, Willems P, Xu Y, Ng S, Van Aken O, Duncan O, Zhang B, Storme V, Chan KX, Vaneechoutte D, Pogson BJ, Van Breusegem F, Whelan J, De Clercq I (2017) The transcription factor MYB29 is a regulator of ALTERNATIVE OXIDASE1a. Plant Physiol 173(3):1824–1843CrossRefPubMedCentralGoogle Scholar
  73. Zhang K, Logacheva MD, Meng Y, Hu J, Wan D, Li L, Dagmar J, Wang Z, Georgiev MI, Yu Z, Yang F, Yan M, Zhou M (2018) Jasmonate-responsive MYB factors spatially repress rutin biosynthesis in Fagopyrum tataricum. J Exp Bot 69(8):1955–1966CrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture and Rural Affairs, National Center for Tea ImprovementTea Research Institute, Chinese Academy of Agricultural SciencesHangzhouPeople’s Republic of China
  2. 2.ARC Centre of Excellence Plant Energy BiologyThe University of Western AustraliaCrawleyAustralia
  3. 3.Institut de Biosciences et BiotechnologiesCommissariat à l’Énergie Atomique et aux Énergies Alternatives, CadaracheSt Paul-Lez-DuranceFrance

Personalised recommendations