Advertisement

Planta

, Volume 248, Issue 5, pp 1049–1062 | Cite as

Current advances in gibberellic acid (GA3) production, patented technologies and potential applications

  • Marcela C. Camara
  • Luciana P. S. Vandenberghe
  • Cristine Rodrigues
  • Juliana de Oliveira
  • Craig Faulds
  • Emmanuel Bertrand
  • Carlos R. Soccol
Review
  • 282 Downloads

Abstract

Main conclusion

Gibberellic acid is a plant growth hormone that promotes cell expansion and division. Studies have aimed at optimizing and reducing production costs, which could make its application economically viable for different cultivars.

Gibberellins consist of a large family of plant growth hormones discovered in the 1930s, which are synthesized via the terpenes route from the geranylgeranyl diphosphate and feature a basic structure formed by an ent-gibberellane tetracyclic skeleton. Among them, only four have biological activity, including gibberellic acid (GA3), which acts as a natural plant growth regulator, especially for stem elongation, seed germination, and increased fruit size. It can be obtained from plants, fungi, and bacteria. There are also some reports about microalgae GA3 producers. Fungi, especially Gibberella fujikuroi, are preferred for GA3 production via submerged fermentation or solid-state fermentation. Many factors may affect its production, some of which are related to the control and scale-up of fermentation parameters. Different GA3 products are available on the market. They can be found in liquid or solid formulations containing only GA3 or a mixture of other biological active gibberellins, which can be applied on a wide variety of cultivars, including crops and fruits. However, the product’s cost still limits its large and continuous application. New low-cost and efficient GA3 production alternatives are surely welcome. This review deals with the latest scientific and technological advances on production, recovery, formulation, and applications of this important plant growth hormone.

Keywords

Plant growth regulators Fusarium fujikuroi Submerged fermentation Alternative substrate Downstream Formulation 

Notes

Acknowledgements

This research was supported by National Council of Technological and Scientific Development (CNPq) and Coordination for the Improvement of Higher Education Personnel (CAPES).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals.

References

  1. Agosin E, Maureira M, Biffani V, Perez F (1997) Production of gibberellins by solid substrate cultivation of Gibberella fujikuroi. Adv Solid State Ferment.  https://doi.org/10.1007/978-94-017-0661-2_29 CrossRefGoogle Scholar
  2. Akter N, Islam MR, Karim MA, Hossain T (2014) Alleviation of drought stress in maize by exogenous application of gibberellic acid and cytokinin. J Crop Sci Biotechnol 17:41–48.  https://doi.org/10.1007/s12892-013-0117-3 CrossRefGoogle Scholar
  3. Albermann S, Elter T, Teubner A et al (2013) Characterization of novel mutants with an altered gibberellin spectrum in comparison to different wild-type strains of Fusarium fujikuroi. Appl Microbiol Biotechnol 97:7779–7790.  https://doi.org/10.1007/s00253-013-4917-7 CrossRefPubMedPubMedCentralGoogle Scholar
  4. Alvarenga R, Moraes JC, Auad AM et al (2017) Induction of resistance of corn plants to Spodoptera frugiperda (J. E. Smith, 1797) (Lepidoptera: Noctuidae) by application of silicon and gibberellic acid. Bull Entomol Res.  https://doi.org/10.1017/S0007485316001176 CrossRefPubMedPubMedCentralGoogle Scholar
  5. Ates S, Ozenir S, Gökdere M (2006) Effect of silicone oil on gibberellic acid production by Gibberella fujikuroi and Aspergillus niger. Appl Biochem Microbiol 42:500–501.  https://doi.org/10.1134/S0003683806050097 CrossRefGoogle Scholar
  6. Balaguera-Lopez HE, Cardenas-Hernandez JF, Alvarez-Herrera JG (2009) Effect of gibberellic acid (GA3) on seed germination and growth of tomato (Solanum lycopersicum L.). Acta Hort (ISHS) 821:141–148.  https://doi.org/10.17660/ActaHortic.2009.821.15 CrossRefGoogle Scholar
  7. Bandelier S, Renaud R, Durand A (1997) Production of gibberellic acid by fed-batch solid state fermentation in an aseptic pilot-scale reactor. Process Biochem 32:141–145.  https://doi.org/10.1016/S0032-9592(96)00063-5 CrossRefGoogle Scholar
  8. Berrios J, Pyle DL, Aroca G (2010) Gibberellic acid extraction from aqueous solutions and fermentation broths by using emulsion liquid membranes. J Memb Sci 348:91–98.  https://doi.org/10.1016/j.memsci.2009.10.040 CrossRefGoogle Scholar
  9. Berríos J, Illanes A, Aroca G (2004) Spectrophotometric method for determining gibberellic acid in fermentation broths. Biotechnol Lett 26:67–70.  https://doi.org/10.1023/B:BILE.0000009463.98203.8b CrossRefPubMedPubMedCentralGoogle Scholar
  10. Bömke C, Tudzynski B (2009) Diversity, regulation, and evolution of the gibberellin biosynthetic pathway in fungi compared to plants and bacteria. Phytochemistry 70:1876–1893.  https://doi.org/10.1016/j.phytochem.2009.05.020 CrossRefPubMedPubMedCentralGoogle Scholar
  11. Brian PW, Radley ME, Brian PW, et al (1958) Gibberellic acid compounds, and preparation and use thereof. US 2842051, 1–9Google Scholar
  12. Briggs DE (1963) Brewing industry research foundation effects of gibberellic acid on barley germination and its use in malting: a review. J Inst Brew 69:244–248.  https://doi.org/10.1002/j.2050-0416.1963 CrossRefGoogle Scholar
  13. Bruckner B, Blechschmidt D, Schiller F et al (1991) The gibberellin fermentation. Crit Rev Biotechnol 192:163–192.  https://doi.org/10.3109/07388559109040621 CrossRefGoogle Scholar
  14. Casanova L, Casanova R, Moret A, Agustí M (2009) The application of gibberellic acid increases berry size of ‘Emperatriz’ seedless grape. Span J Agric Res 7:919–927CrossRefGoogle Scholar
  15. Chen S-Y, Kuo S-R, Chien C-T (2008) Roles of gibberellins and abscisic acid in dormancy and germination of red bayberry (Myrica rubra) seeds. Tree Physiol 28:1431–1439.  https://doi.org/10.1093/treephys/28.9.1431 CrossRefPubMedPubMedCentralGoogle Scholar
  16. Christiaens A, Dhooghe E, Pinxteren D, Van Labeke MC (2012) Flower development and effects of a cold treatment and a supplemental gibberellic acid application on flowering of Helleborus niger and Helleborus x ericsmithii. Sci Hortic (Amsterdam) 136:145–151.  https://doi.org/10.1016/j.scienta.2012.01.017 CrossRefGoogle Scholar
  17. Colebrook EH, Thomas SG, Phillips AL, Hedden P (2014) The role of gibberellin signalling in plant responses to abiotic stress. J Exp Biol 217:67–75.  https://doi.org/10.1242/jeb.089938 CrossRefPubMedPubMedCentralGoogle Scholar
  18. Conab (2016) Acompanhamento da safra brasileira de grãos. v. 9 Safra 2015/16 1–178Google Scholar
  19. Datta R, Vasek GJ, Pasieta LM (2006) Liquid formulation of a plant growth regulator. US 0172890, 1–5Google Scholar
  20. Dayan J, Voronin N, Gong F et al (2012) Leaf-induced gibberellin signaling is essential for internode elongation, cambial activity, and fiber differentiation in Tobacco stems. Plant Cell 24:66–79.  https://doi.org/10.1105/tpc.111.093096 CrossRefPubMedPubMedCentralGoogle Scholar
  21. de Oliveira J, Rodrigues C, Vandenberghe LPS et al (2017) Gibberellic acid production by different fermentation systems using citric pulp as substrate/support. Biomed Res Int 2017:8.  https://doi.org/10.1155/2017/5191046 CrossRefGoogle Scholar
  22. Devisetty BN, Beach RM, Menendez RA, Warrior P (2006) Concentrated, water-soluble, granular plant growth regulator formulation and methods for use of same. US 6984609, 1–8Google Scholar
  23. Devisetty BN, Warrior P, Menendez R et al (2007) Development of fast dissolving concentrated gibberellin. J ASTM Int 4:3–10.  https://doi.org/10.1520/JAI100933 CrossRefGoogle Scholar
  24. Devisetty BN, Pienaar JD, Fritts R, Venburg GD (2015) Low voc gibberellins formulations. US 20150173365, 1–12Google Scholar
  25. Economou CN, Makri A, Aggelis G et al (2010) Semi-solid state fermentation of sweet sorghum for the biotechnological production of single cell oil. Bioresour Technol 101:1385–1388.  https://doi.org/10.1016/j.biortech.2009.09.028 CrossRefPubMedPubMedCentralGoogle Scholar
  26. Escamilla Silva EM, Dendooven L, Uscanga Reynell JA et al (1999) Morphological development and gibberellin production by different strains of Gibberella fujikuroi in shake flasks and bioreactor. World J Microbiol Biotechnol 15:753–755.  https://doi.org/10.1023/A:1008976000179 CrossRefGoogle Scholar
  27. Escamilla EM, Dendooven L, Magaña IP et al (2000) Optimization of gibberellic acid production by immobilized Gibberella fujikuroi mycelium in fluidized bioreactors. J Biotechnol 76:147–155.  https://doi.org/10.1016/S0168-1656(99)00182-0 CrossRefPubMedPubMedCentralGoogle Scholar
  28. Finch-Savage WE, Leubner-Metzger G (2006) Seed dormancy and the control of germination. New Phytol 171:501–523.  https://doi.org/10.1111/j.1469-8137.2006.01787.x CrossRefGoogle Scholar
  29. Geary RJ, Beach V, Haber R (1962) Plant growth regulator. US 3038794, 1–4Google Scholar
  30. Gonzalez JC, Medina SC, Rodriguez A et al (2013) Production of Trametes pubescens laccase under submerged and semi-solid culture conditions on agro-industrial wastes. PLoS ONE 8:1–14.  https://doi.org/10.1371/journal.pone.0073721 CrossRefGoogle Scholar
  31. Hamayun M, Khan SA, Khan AL et al (2010) Exogenous gibberellic acid reprograms soybean to higher growth and salt stress tolerance. J Agric Food Chem 58:7226–7230.  https://doi.org/10.1021/jf101221t CrossRefPubMedPubMedCentralGoogle Scholar
  32. Hao YH, Zhang Z, Wang L et al (2015) Stable isotope labeling assisted liquid chromatography-electrospray tandem mass spectrometry for quantitative analysis of endogenous gibberellins. Talanta 144:341–348.  https://doi.org/10.1016/j.talanta.2015.06.056 CrossRefPubMedPubMedCentralGoogle Scholar
  33. Hedden P, Phillips AL (2000) Gibberellin metabolism: new insights revealed by the genes. Trends Plant Sci 5:523–530.  https://doi.org/10.1016/S1360-1385(00)01790-8 CrossRefPubMedPubMedCentralGoogle Scholar
  34. Hedden P, Sponsel V (2015) A century of gibberellin research. J Plant Growth Regul 34:740–760.  https://doi.org/10.1007/s00344-015-9546-1 CrossRefPubMedPubMedCentralGoogle Scholar
  35. Holbrook A, Edge W, Bailey F (1961) Spectrophotometric method for determination of gibberellic acid. Adv Chem Ser 28:159–167.  https://doi.org/10.1021/ba-1961-0028.ch018 CrossRefGoogle Scholar
  36. Hollmann D, Switalski J, Geipel S, Onken U (1995) Extractive fermentation of gibberellic acid by Gibberella fujikuroi. J Ferment Bioeng 79:594–600CrossRefGoogle Scholar
  37. Horvitz S, Godoy C, Camelo AFL et al (2002) Application of gibberellic acid to’Sweetheart’sweet cherries: effects on fruit quality at harvest and during cold storage. XXVI Int Hortic Congr Issues Adv Postharvest Hortic 628:311–316.  https://doi.org/10.17660/ActaHortic.2003.628.37 CrossRefGoogle Scholar
  38. Kahlon SS, Malhotra S (1986) Production of gibberellic acid by fungal mycelium immobilized in sodium alginate. Enzyme Microb Technol 8:613–616.  https://doi.org/10.1016/0141-0229(86)90121-3 CrossRefGoogle Scholar
  39. Kavanagh F, Kuzel NR (1958) Fluorometric determination of gibberellic acid and gibberellenic acids in fermentation products, commercial formulations, and purified materials. Agric Food Chem 6:459–463.  https://doi.org/10.1021/jf60088a006 CrossRefGoogle Scholar
  40. Kawaide HK (2006) Biochemical and molecular analyses of gibberellin biosynthesis in fungi. Biosci Biotechnol Biochem 70:583–590.  https://doi.org/10.1271/bbb.70.583 CrossRefPubMedPubMedCentralGoogle Scholar
  41. Koyuncu F (2005) Breaking seed dormancy in black mulberry (Morus nigra L.) by cold stratification and exogenous application of gibberellic acid. Acta Biol Cracoviensia Ser Bot 47:23–26.  https://doi.org/10.17221/22/2015-JFS CrossRefGoogle Scholar
  42. Kumar PKR, Lonsane BK (1990) Solid state fermentation: physical and nutritional factors influencing gibberellic acid production. Appl Microbiol Biotechnol 34:145–148.  https://doi.org/10.1007/BF00166770 CrossRefGoogle Scholar
  43. Kumar PKR, Sankar KU, Lonsane BK (1991) Supercritical fluid extraction from dry mouldy bran for the purification of gibberellic acid from the concomitant products produced during solid state fermentation. Chem Eng J 46:53–58.  https://doi.org/10.1016/0300-9467(91)80030-Z CrossRefGoogle Scholar
  44. La Pierre RJ, Iselin NJ (1961) Stable formulations of plant growth stimulant. US 3004845, 1–4Google Scholar
  45. Lale G, Gadre R (2010) Enhanced production of gibberellin A4 (GA4) by a mutant of Gibberella fujikuroi in wheat gluten medium. J Ind Microbiol Biotechnol 37:297–306.  https://doi.org/10.1007/s10295-009-0673-1 CrossRefPubMedPubMedCentralGoogle Scholar
  46. Li Y-H, Wu Y-J, Wu B et al (2011) Exogenous gibberellic acid increases the fruit weight of ‘Comte de Paris’ pineapple by enlarging flesh cells without negative effects on fruit quality. Acta Physiol Plant 33:1715–1722.  https://doi.org/10.1007/s11738-010-0708-2 CrossRefGoogle Scholar
  47. Liu Y, Sun Y, He S et al (2013) Synthesis and characterization of gibberellin-chitosan conjugate for controlled-release applications. Int J Biol Macromol 57:213–217.  https://doi.org/10.1016/j.ijbiomac.2013.03.024 CrossRefGoogle Scholar
  48. Lu XZ, Xie ZC, Kumakura M (1995) Production of gibberellic acid in Gibberella fujikuroi adhered onto polymeric fibrous carriers. Process Biochem 30:661–665.  https://doi.org/10.1016/0032-9592(94)00042-G CrossRefGoogle Scholar
  49. Lu YH, Cao YM, Guo XF et al (2016) Determination of gibberellins using HPLC coupled with fluorescence detection. Anal Methods 8:1520–1526.  https://doi.org/10.1039/c5ay03133h CrossRefGoogle Scholar
  50. Machado CMM, Oliveira BH, Pandey A, Soccol RC (2001) Coffee husk as substrate for the production of gibberellic acid by fermentation. In: Sera T, Soccol CR, Pandey A, Roussos S (eds) Book on coffee biotechnology and quality. Kluwer Academic Publishers, Dorcrecht, pp 401–408Google Scholar
  51. Machado CMM, Soccol CR, de Oliveira BH, Pandey A (2002) Gibberellic acid production by solid-state fermentation in coffee husk. Appl Biochem Biotechnol 102–103:179–191.  https://doi.org/10.1385/ABAB:102-103:1-6:179 CrossRefPubMedPubMedCentralGoogle Scholar
  52. MacLeod AM, Millar AS (1962) Effects of gibberellic acid on barley endosperm. J Inst Brew 68:322–332.  https://doi.org/10.1002/j.2050-0416.1962.tb01873.x CrossRefGoogle Scholar
  53. MacMillan J (2001) Occurrence of gibberellins in vascular plants, fungi, and bacteria. J Plant Growth Regul 20:387–442.  https://doi.org/10.1007/s003440010038 CrossRefPubMedPubMedCentralGoogle Scholar
  54. Magalhães AI, de Carvalho JC, Medina JDC, Soccol CR (2017) Downstream process development in biotechnological itaconic acid manufacturing. Appl Microbiol Biotechnol 101:1–12.  https://doi.org/10.1007/s00253-016-7972-z CrossRefPubMedPubMedCentralGoogle Scholar
  55. Mai HTN, Lee KM, Choi SS (2016) Enhanced oxalic acid production from corncob by a methanol-resistant strain of Aspergillus niger using semi solid-sate fermentation. Process Biochem 51:9–15.  https://doi.org/10.1016/j.procbio.2015.11.005 CrossRefGoogle Scholar
  56. Meleigy SA, Khalaf MA (2009) Biosynthesis of gibberellic acid from milk permeate in repeated batch operation by a mutant Fusarium moniliforme cells immobilized on loofa sponge. Bioresour Technol 100:374–379.  https://doi.org/10.1016/j.biortech.2008.06.024 CrossRefPubMedPubMedCentralGoogle Scholar
  57. Muñoz-Fambuena N, Mesejo C, González-Mas MC et al (2012) Gibberellic acid reduces flowering intensity in sweet orange [Citrus sinensis (L.) Osbeck] by repressing CiFT gene expression. J Plant Growth Regul 31:529–536.  https://doi.org/10.1007/s00344-012-9263-y CrossRefGoogle Scholar
  58. Nhujak T, Srisa-art M, Kalampakorn K et al (2005) Determination of gibberellic acid in fermentation broth and commercial products by micellar electrokinetic chromatography. J Agric Food Chem 53:1884–1889.  https://doi.org/10.1021/jf0484733 CrossRefPubMedPubMedCentralGoogle Scholar
  59. Ortega-Baes P, Rojas-Aréchiga M (2007) Seed germination of Trichocereus terscheckii (Cactaceae): light, temperature and gibberellic acid effects. J Arid Environ 69:169–176.  https://doi.org/10.1016/j.jaridenv.2006.09.009 CrossRefGoogle Scholar
  60. Pandey A, Soccol CR, Mitchell D (2000) New developments in solid state fermentation: I-bioprocesses and products. Process Biochem 35:1153–1169.  https://doi.org/10.1016/S0032-9592(00)00152-7 CrossRefGoogle Scholar
  61. Pastrana LM, Gonzalez M, Torrado A, Murado MA (1995) A fed-batch culture model for improved production of gibberellic acid from a waste medium. Biotechnol Lett 17:263–268.  https://doi.org/10.1007/BF01190634 CrossRefGoogle Scholar
  62. Pawlak JA (2016) Gibberellin formulations. US 20160360748, 1–8Google Scholar
  63. Pérez FJ, Vecchiola A, Pinto M, Agosin E (1996) Gibberellic acid decomposition and its loss of biological activity in aqueous solutions. Phytochemistry 41:675–679.  https://doi.org/10.1016/0031-9422(95)00689-3 CrossRefGoogle Scholar
  64. Rademacher W (2000) Growth retardants: effects on gibberellin biosynthesis and other metabolic pathways. Plant Physiol Plant Mol Biol 51:501–531.  https://doi.org/10.1146/annurev.arplant.51.1.501 CrossRefGoogle Scholar
  65. Rademacher W (2015) Plant growth regulators: backgrounds and uses in plant production. J Plant Growth Regul 34:845–872.  https://doi.org/10.1007/s00344-015-9541-6 CrossRefGoogle Scholar
  66. Rademacher W, Schneider K-H, Kober R, et al (1999) Plant growth regulating formulations. WO/2000/002454A1Google Scholar
  67. Rangaswamy V (2012) Improved production of gibberellic acid by Fusarium moniliforme. J Microbiol Res 2:51–55.  https://doi.org/10.5923/j.microbiology.20120203.02 CrossRefGoogle Scholar
  68. Rios-Iribe EY, Flores-Cotera LB, Chávira MMG et al (2011) Inductive effect produced by a mixture of carbon source in the production of gibberellic acid by Gibberella fujikuroi. World J Microbiol Biotechnol 27:1499–1505.  https://doi.org/10.1007/s11274-010-0603-4 CrossRefPubMedPubMedCentralGoogle Scholar
  69. Rios-iribe EY, Hernández-Calderón OM, Escamilla-silva EM (2016) Kinetic analysis of the uptake of glucose and corn oil used as carbon sources in batch cultures of Gibberella fujikuroi. World J Microbiol Biotechnol 32:182.  https://doi.org/10.1007/s11274-016-2139-8 CrossRefPubMedPubMedCentralGoogle Scholar
  70. Rodrigues C (2010) Produção, extração e purificação de hormônio vegetal (ácido giberélico) por fermentação no estado sólido em polpa cítrica e utilização do extrato fermentado em meio de cultivo de bromélias in vitro. Universidade Federal do ParanáGoogle Scholar
  71. Rodrigues C, Porto L, Vandenberghe DS et al (2009) A new alternative to produce gibberellic acid by solid state fermentation. Braz Arch Biol Technol 52:181–188.  https://doi.org/10.1590/S1516-89132009000700023 CrossRefGoogle Scholar
  72. Rodrigues C, Vandenberghe LPDS, de Oliveira J, Soccol CR (2012a) New perspectives of gibberellic acid production: a review. Crit Rev Biotechnol 32:263–273.  https://doi.org/10.3109/07388551.2011.615297 CrossRefPubMedPubMedCentralGoogle Scholar
  73. Rodrigues C, Oliveira J, Vandenberghe LPDS, Soccol CR (2012b) Processo de produção e purificação de ácido giberélico, seu uso e aplicações. BR n. 102012008883-5A2Google Scholar
  74. Rodrigues C, Vandenberghe LPS, Goyzueta LD, Soccol CR (2016) Production, extraction and purification of gibberellic acid by solid state fermentation using citric pulp and soy husk. Baoj Chem 2:8Google Scholar
  75. Saleem M, Asghar HN, Khan MY, Zahir ZA (2015) Gibberellic acid in combination with pressmud enhances the growth of sunflower and stabilizes chromium (VI) -contaminated soil. Environ Sci Pollut Res 22:10610–10617.  https://doi.org/10.1007/s11356-015-4275-3 CrossRefGoogle Scholar
  76. Carvalho C de, Kist BB, Santos CE dos, et al. (2017) Brazilian fruit yearbook. Ed. Gaz. 88Google Scholar
  77. Satpute D, Sharma V, Murarkar K (2010) Solid-state fermentation for production of gibberellic acid using agricultural residues. Int J Environment Pollut 43:201–213.  https://doi.org/10.1504/IJEP.2010.035924 CrossRefGoogle Scholar
  78. Selvaraj S, Murty VR (2017) Semi-solid state fermentation: a promising method for production and optimization of tannase from Bacillus gottheilii M2S2. Res J Biotechnol 12:39–48Google Scholar
  79. Senior N, Park A (1962) Dry formulations of gibberellic acid compounds. US 3031290, 1–3Google Scholar
  80. Sharma RR, Singh R (2009) Gibberellic acid influences the production of malformed and button berries, and fruit yield and quality in strawberry (Fragaria × ananassa Duch.). Sci Hortic (Amsterdam) 119:430–433.  https://doi.org/10.1016/j.scienta.2008.11.002 CrossRefGoogle Scholar
  81. Sharma R, Iyer JP, Chakraborti AK, Banerjee UC (2004) Determination of gibberellins in fermentation broth produced by Fusarium verticilliodes MTCC 156 by high-performance liquid chromatography tandem mass spectrometry. Biotechnol Appl Biochem 88:83–88CrossRefGoogle Scholar
  82. Shomeili M, Nabipour M, Meskarbashee M, Memari HR (2011) Effects of gibberellic acid on sugarcane plants exposed to salinity under a hydroponic system. J Afr Plant Sci 5:609–616Google Scholar
  83. Shukla R, Srivastava A, Chand S (2003) Bioprocess strategies and recovery processes in gibberellic acid fermentation. Biotechnol Bioprocess Eng 8:269–278.  https://doi.org/10.1007/BF02949216 CrossRefGoogle Scholar
  84. Shukla R, Chand S, Srivastava AK (2005) Improvement of gibberellic acid production using a model based fed-batch cultivation of Gibberella fujikuroi. Process Biochem 40:2045–2050.  https://doi.org/10.1016/j.procbio.2004.07.017 CrossRefGoogle Scholar
  85. Shukla R, Chand S, Srivastava AK (2007) Production of gibberellic acid by multiple fed-batch cultivation of Gibberella fujikuroi. Chem Biochem Eng 21:159–162Google Scholar
  86. Singhania RR, Patel AK, Soccol CR, Pandey A (2009) Recent advances in solid-state fermentation. Biochem Eng J 44:13–18.  https://doi.org/10.1016/j.bej.2008.10.019 CrossRefGoogle Scholar
  87. Soccol CR, Vandenberghe LP (2003) Overview of applied solid-state fermentation in Brazil. Biochem Eng J 13:205–218.  https://doi.org/10.1016/S1369-703X(02)00133-X CrossRefGoogle Scholar
  88. Steffens B, Wang J, Sauter M (2006) Interactions between ethylene, gibberellin and abscisic acid regulate emergence and growth rate of adventitious roots in deepwater rice. Planta 223:604–612.  https://doi.org/10.1007/s00425-005-0111-1 CrossRefPubMedPubMedCentralGoogle Scholar
  89. Sun Y, Xu Y, Zhou Q et al (2013) The potential of gibberellic acid 3 (GA 3) and Tween-80 induced phytoremediation of co-contamination of Cd and Benzo [a] pyrene (B [a] P) using Tagetes patula. J Environ Manag 114:202–208.  https://doi.org/10.1016/j.jenvman.2012.09.018 CrossRefGoogle Scholar
  90. Taiz L, Zeiger E (2009) Fisiologia vegetal, 4a. Artmed, Porto AlegreGoogle Scholar
  91. Tang Z, Zhou R, Duan Z (2000) Separation of gibberellic acid (GA3) by macroporous adsorption resins. J Chem Technol Biotechnol 75:695–700.  https://doi.org/10.1007/s11705-008-0025-0 CrossRefGoogle Scholar
  92. Tarkowská D, Novák O, Floková K et al (2014) Quo vadis plant hormone analysis? Planta 240:55–76.  https://doi.org/10.1007/s00425-014-2063-9 CrossRefPubMedPubMedCentralGoogle Scholar
  93. Tomasini A, Fajardo C (1997) Gibberellic acid production using different solid-state fermentation systems. World J Microbiol Biotechnol 13:203–206.  https://doi.org/10.1023/A:1018545932104 CrossRefGoogle Scholar
  94. Tudzynski B (2005) Gibberellin biosynthesis in fungi: genes, enzymes, evolution, and impact on biotechnology. Appl Microbiol Biotechnol 66:597–611.  https://doi.org/10.1007/s00253-004-1805-1 CrossRefPubMedPubMedCentralGoogle Scholar
  95. Tuna AL, Kaya C, Dikilitas M, Higgs D (2008) The combined effects of gibberellic acid and salinity on some antioxidant enzyme activities, plant growth parameters and nutritional status in maize plants. Environ Exp Bot 62:1–9.  https://doi.org/10.1016/j.envexpbot.2007.06.007 CrossRefGoogle Scholar
  96. Urbanova T, Leubner-Metzger G (2016) Gibberellins and seed germination. In: Hedden P, Thomas SG (eds) The gibberellins. Annual plant reviews. Wiley, Oxford, pp 253–284CrossRefGoogle Scholar
  97. Urbanová T, Tarkowská D, Novák O et al (2013) Analysis of gibberellins as free acids by ultra performance liquid chromatography-tandem mass spectrometry. Talanta 112:85–94.  https://doi.org/10.1016/j.talanta.2013.03.068 CrossRefPubMedPubMedCentralGoogle Scholar
  98. Uslu H (2012) Distribution of gibberellic acid from the aqueous phase to the organic phase. J Chem Eng Data 57:902–906.  https://doi.org/10.1021/je201337c CrossRefGoogle Scholar
  99. Uslu H, Datta D, Bamufleh HS (2014) Extraction equilibria of gibberellic acid by tridodecylamine dissolved in alcohols. J Chem Eng Data 59:3882–3887.  https://doi.org/10.1021/je500773w CrossRefGoogle Scholar
  100. Uthandi S, Karthikeyan S, Sabarinathan KG (2010) Gibberellic acid production by Fusarium fujikuroi SG2. J Sci Ind Res 69:211–214Google Scholar
  101. Wang R, Yang J, Shi Z, Ou L (2008) Separation of gibberellic acid (GA3) by macroporous adsorption resins. Front Chem Eng China 2:171–175.  https://doi.org/10.1007/s11705-008-0025-0 CrossRefGoogle Scholar
  102. Wang Y, Warrior P, Lone A, et al (2013) Stable S-(+)- Abscisic acid liquid and soluble granule formulations. US 8454982, 1–8Google Scholar
  103. Wang Y, Zhao J, Lu W, Deng D (2017) Gibberellin in plant height control: old player, new story. Plant Cell Rep 36:391–398.  https://doi.org/10.1007/s00299-017-2104-5 CrossRefPubMedPubMedCentralGoogle Scholar
  104. Yamaguchi S (2008) Gibberellin metabolism and its regulation. Annu Rev Plant Biol 59:225–251.  https://doi.org/10.1146/annurev.arplant.59.032607.092804 CrossRefGoogle Scholar
  105. Zang Y, Chun I, Zhang L et al (2016) Effect of gibberellic acid application on plant growth attributes, return bloom, and fruit quality of rabbiteye blueberry. Sci Hortic (Amsterdam) 200:13–18.  https://doi.org/10.1016/j.scienta.2015.12.057 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Marcela C. Camara
    • 1
  • Luciana P. S. Vandenberghe
    • 1
  • Cristine Rodrigues
    • 1
  • Juliana de Oliveira
    • 1
  • Craig Faulds
    • 2
  • Emmanuel Bertrand
    • 2
  • Carlos R. Soccol
    • 1
  1. 1.Bioprocess Engineering and Biotechnology DepartmentFederal University of Paraná, Centro PolitécnicoCuritibaBrazil
  2. 2.Aix-Marseille Université, POLYTECH Marseille, UMR 1163 Biotechnologie des Champignons FilamenteuxMarseille Cedex 09France

Personalised recommendations