Advertisement

Planta

pp 1–13 | Cite as

Construction of a high-density genetic map and its application for leaf shape QTL mapping in poplar

  • Wenxiu Xia
  • Zheng’ang Xiao
  • Pei Cao
  • Yan Zhang
  • Kebing Du
  • Nian Wang
Original Article

Abstract

Main conclusion

High-quality and dense genetic maps were constructed, and leaf shape variation was dissected by QTL mapping in poplar.

Species in the genus Populus, also known as poplars, are important woody species and considered model plants for perennial trees. High-density genetic maps are valuable genomic resources for population genetics. Here, we generated a high-quality and dense genetic map for an F1 poplar population using high-throughput NGS-based genotyping. A total of 92,097 high-quality SNP markers were developed by stringent filtering and identification. In total, 889 and 1650 SNPs formed the female and male genetic maps, respectively. To test the application of the genetic maps, QTL mapping of leaf shape was conducted for this F1 population. A total of nine parameters were scored for leaf shape variation in three different environments. Combining genetic maps and measurements of the nine leaf shape parameters, we mapped a total of 42 significant QTLs. The highest LOD score of all QTLs was 9.2, and that QTL explained the most (15.13%) trait variation. A total of nine QTLs could be detected in at least two environments, and they were located in two genomic regions. Within these two QTL regions, some candidate genes for regulating leaf shape were predicted through functional annotation. The successful mapping of leaf shape QTLs demonstrated the utility of our genetic maps. According to the performance of this study, we were able to provide high-quality and dense genetic maps and dissect the leaf shape variation in poplar.

Keywords

Poplars Genetic maps QTL mapping Leaf shape variation 

Abbreviations

CI

Confidence interval

GBS

Genotyping by sequencing

GWAS

Genome-wide association

LPI

Leaf plastochron index

LOD

Logarithm of odds

NGS

Next generation sequencing

QTL

Quantity trait locus

Notes

Acknowledgements

Financial support for this work was provided by the National Natural Science Foundation of China (NSFC Accession No. 31670651 and No. 31570665) and Fundamental Research Funds for the Central Universities (No. 520902-0900202801). The authors are grateful to American Journal Experts (AJE) for improving the English in this paper.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

425_2018_2958_MOESM1_ESM.pptx (2.1 mb)
Supplementary material 1 (PPTX 2184 kb)
425_2018_2958_MOESM2_ESM.xlsx (134 kb)
Supplementary material 2 (XLSX 133 kb)

References

  1. Aguilar-Martinez JA, Sinha N (2013) Analysis of the role of Arabidopsis class I TCP genes AtTCP7, AtTCP8, AtTCP22, and AtTCP23 in leaf development. Front Plant Sci 4:406.  https://doi.org/10.3389/fpls.2013.00406 CrossRefPubMedPubMedCentralGoogle Scholar
  2. Arends D, Prins P, Jansen RC, Broman KW (2010) R/qtl: high-throughput multiple QTL mapping. Bioinformatics 26(23):2990–2992.  https://doi.org/10.1093/bioinformatics/btq565 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Barkoulas M, Galinha C, Grigg SP, Tsiantis M (2007) From genes to shape: regulatory interactions in leaf development. Curr Opin Plant Biol 10(6):660–666.  https://doi.org/10.1016/j.pbi.2007.07.012 CrossRefPubMedGoogle Scholar
  4. Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30(15):2114–2120.  https://doi.org/10.1093/bioinformatics/btu170 CrossRefPubMedPubMedCentralGoogle Scholar
  5. Byrne ME (2005) Networks in leaf development. Curr Opin Plant Biol 8(1):59–66.  https://doi.org/10.1016/j.pbi.2004.11.009 CrossRefPubMedGoogle Scholar
  6. Byrne M, Timmermans M, Kidner C, Martienssen R (2001) Development of leaf shape. Curr Opin Plant Biol 4(1):38–43CrossRefPubMedGoogle Scholar
  7. Carletti G, Carra A, Allegro G, Vietto L, Desiderio F, Bagnaresi P, Gianinetti A, Cattivelli L, Vale G, Nervo G (2016) QTLs for woolly poplar aphid (Phloeomyzus passerinii L.) resistance detected in an inter-specific Populus deltoides × P. nigra mapping population. PLoS One 11(3):e0152569.  https://doi.org/10.1371/journal.pone.0152569 CrossRefPubMedPubMedCentralGoogle Scholar
  8. Chen T, Zhang Y, Zhao L, Zhu Z, Lin J, Zhang S, Wang C (2009) Fine mapping and candidate gene analysis of a green-revertible albino gene gra(t) in rice. J Genet Genom 36(2):117–123.  https://doi.org/10.1016/S1673-8527(08)60098-3 CrossRefGoogle Scholar
  9. Chen J, Wang N, Fang LC, Liang ZC, Li SH, Wu BH (2015) Construction of a high-density genetic map and QTLs mapping for sugars and acids in grape berries. BMC Plant Biol.  https://doi.org/10.1186/s12870-015-0428-2 Google Scholar
  10. Drost DR, Puranik S, Novaes E, Novaes CR, Dervinis C, Gailing O, Kirst M (2015) Genetical genomics of Populus leaf shape variation. BMC Plant Biol 15:166.  https://doi.org/10.1186/s12870-015-0557-7 CrossRefPubMedPubMedCentralGoogle Scholar
  11. Du Q, Gong C, Wang Q, Zhou D, Yang H, Pan W, Li B, Zhang D (2016) Genetic architecture of growth traits in Populus revealed by integrated quantitative trait locus (QTL) analysis and association studies. New Phytol 209(3):1067–1082.  https://doi.org/10.1111/nph.13695 CrossRefPubMedGoogle Scholar
  12. Eckenwalder J (1996) Systematics and evolution of Populus. In: Stettler RF, Bradshaw HD, Heilman JPE, Hinckley TM (eds) Biology of Populus and its implications for management and conservation. NRC Research Press, OttawaGoogle Scholar
  13. Frewen BE, Chen TH, Howe GT, Davis J, Rohde A, Boerjan W, Bradshaw HD Jr (2000) Quantitative trait loci and candidate gene mapping of bud set and bud flush in populus. Genetics 154(2):837–845PubMedPubMedCentralGoogle Scholar
  14. Fujino K, Matsuda Y, Ozawa K, Nishimura T, Koshiba T, Fraaije MW, Sekiguchi H (2008) NARROW LEAF 7 controls leaf shape mediated by auxin in rice. Mol Genet Genom MGG 279(5):499–507.  https://doi.org/10.1007/s00438-008-0328-3 CrossRefGoogle Scholar
  15. Gunawardena AH, Greenwood JS, Dengler NG (2004) Programmed cell death remodels lace plant leaf shape during development. Plant Cell 16(1):60–73.  https://doi.org/10.1105/tpc.016188 CrossRefPubMedPubMedCentralGoogle Scholar
  16. Ikezaki M, Kojima M, Sakakibara H, Kojima S, Ueno Y, Machida C, Machida Y (2010) Genetic networks regulated by ASYMMETRIC LEAVES1 (AS1) and AS2 in leaf development in Arabidopsis thaliana: KNOX genes control five morphological events. Plant J Cell Mol Biol 61(1):70–82.  https://doi.org/10.1111/j.1365-313X.2009.04033.x CrossRefGoogle Scholar
  17. Induri BR, Ellis DR, Slavov GT, Yin T, Zhang X, Muchero W, Tuskan GA, DiFazio SP (2012) Identification of quantitative trait loci and candidate genes for cadmium tolerance in Populus. Tree Physiol 32(5):626–638.  https://doi.org/10.1093/treephys/tps032 CrossRefPubMedGoogle Scholar
  18. Jiang F, Guo M, Yang F, Duncan K, Jackson D, Rafalski A, Wang S, Li B (2012) Mutations in an AP2 transcription factor-like gene affect internode length and leaf shape in maize. PLoS One 7(5):e37040.  https://doi.org/10.1371/journal.pone.0037040 CrossRefPubMedPubMedCentralGoogle Scholar
  19. Kieffer M, Master V, Waites R, Davies B (2011) TCP14 and TCP15 affect internode length and leaf shape in Arabidopsis. Plant J Cell Mol Biol 68(1):147–158.  https://doi.org/10.1111/j.1365-313X.2011.04674.x CrossRefGoogle Scholar
  20. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R, Genome Project Data Processing S (2009) The sequence alignment/map format and SAMtools. Bioinformatics 25(16):2078–2079.  https://doi.org/10.1093/bioinformatics/btp352 CrossRefPubMedPubMedCentralGoogle Scholar
  21. Lighten J, van Oosterhout C, Bentzen P (2014) Critical review of NGS analyses for de novo genotyping multigene families. Mol Ecol 23(16):3957–3972.  https://doi.org/10.1111/mec.12843 CrossRefPubMedGoogle Scholar
  22. Ma T, Wang J, Zhou G, Yue Z, Hu Q, Chen Y, Liu B, Qiu Q, Wang Z, Zhang J, Wang K, Jiang D, Gou C, Yu L, Zhan D, Zhou R, Luo W, Ma H, Yang Y, Pan S, Fang D, Luo Y, Wang X, Wang G, Wang J, Wang Q, Lu X, Chen Z, Liu J, Lu Y, Yin Y, Yang H, Abbott RJ, Wu Y, Wan D, Li J, Yin T, Lascoux M, Difazio SP, Tuskan GA, Wang J, Liu J (2013) Genomic insights into salt adaptation in a desert poplar. Nat Commun 4:2797.  https://doi.org/10.1038/ncomms3797 CrossRefPubMedGoogle Scholar
  23. Ma X, Ma J, Fan D, Li C, Jiang Y, Luo K (2016) Genome-wide identification of TCP family transcription factors from Populus euphratica and their involvement in leaf shape regulation. Sci Rep 6:32795.  https://doi.org/10.1038/srep32795 CrossRefPubMedPubMedCentralGoogle Scholar
  24. McCormick RF, Truong SK, Mullet JE (2015) RIG: recalibration and interrelation of genomic sequence data with the GATK. G3 5(4):655–665.  https://doi.org/10.1534/g3.115.017012 CrossRefPubMedGoogle Scholar
  25. Monclus R, Leple JC, Bastien C, Bert PF, Villar M, Marron N, Brignolas F, Jorge V (2012) Integrating genome annotation and QTL position to identify candidate genes for productivity, architecture and water-use efficiency in Populus spp. BMC Plant Biol 12:173.  https://doi.org/10.1186/1471-2229-12-173 CrossRefPubMedPubMedCentralGoogle Scholar
  26. Morreel K, Goeminne G, Storme V, Sterck L, Ralph J, Coppieters W, Breyne P, Steenackers M, Georges M, Messens E, Boerjan W (2006) Genetical metabolomics of flavonoid biosynthesis in Populus: a case study. Plant J Cell Mol Biol 47(2):224–237.  https://doi.org/10.1111/j.1365-313X.2006.02786.x CrossRefGoogle Scholar
  27. Muchero W, Sewell MM, Ranjan P, Gunter LE, Tschaplinski TJ, Yin T, Tuskan GA (2013) Genome anchored QTLs for biomass productivity in hybrid Populus grown under contrasting environments. PLoS One 8(1):e54468.  https://doi.org/10.1371/journal.pone.0054468 CrossRefPubMedPubMedCentralGoogle Scholar
  28. Qin H, Guo W, Zhang YM, Zhang T (2008) QTL mapping of yield and fiber traits based on a four-way cross population in Gossypium hirsutum L. TAG Theor Appl Genet 117(6):883–894.  https://doi.org/10.1007/s00122-008-0828-x CrossRefPubMedGoogle Scholar
  29. Rae AM, Street NR, Robinson KM, Harris N, Taylor G (2009) Five QTL hotspots for yield in short rotation coppice bioenergy poplar: the poplar biomass loci. BMC Plant Biol 9:23.  https://doi.org/10.1186/1471-2229-9-23 CrossRefPubMedPubMedCentralGoogle Scholar
  30. Seo JH, Hong JS, Kim D, Cho BK, Huang TW, Tsai SF, Palsson BO, Charusanti P (2012) Multiple-omic data analysis of Klebsiella pneumoniae MGH 78578 reveals its transcriptional architecture and regulatory features. BMC Genom 13:679.  https://doi.org/10.1186/1471-2164-13-679 CrossRefGoogle Scholar
  31. Singh M, Ceccarelli S, Hamblin J (1993) Estimation of heritability from varietal trials data. TAG Theor Appl Genet 86(4):437–441.  https://doi.org/10.1007/BF00838558 CrossRefPubMedGoogle Scholar
  32. Souilmi Y, Lancaster AK, Jung JY, Rizzo E, Hawkins JB, Powles R, Amzazi S, Ghazal H, Tonellato PJ, Wall DP (2015) Scalable and cost-effective NGS genotyping in the cloud. BMC Med Genom 8:64.  https://doi.org/10.1186/s12920-015-0134-9 CrossRefGoogle Scholar
  33. Sun R, Chang Y, Yang F, Wang Y, Li H, Zhao Y, Chen D, Wu T, Zhang X, Han Z (2015) A dense SNP genetic map constructed using restriction site-associated DNA sequencing enables detection of QTLs controlling apple fruit quality. BMC Genom 16:747.  https://doi.org/10.1186/s12864-015-1946-x CrossRefGoogle Scholar
  34. Tuskan GA, Difazio S, Jansson S, Bohlmann J, Grigoriev I, Hellsten U, Putnam N, Ralph S, Rombauts S, Salamov A, Schein J, Sterck L, Aerts A, Bhalerao RR, Bhalerao RP, Blaudez D, Boerjan W, Brun A, Brunner A, Busov V, Campbell M, Carlson J, Chalot M, Chapman J, Chen GL, Cooper D, Coutinho PM, Couturier J, Covert S, Cronk Q, Cunningham R, Davis J, Degroeve S, Dejardin A, Depamphilis C, Detter J, Dirks B, Dubchak I, Duplessis S, Ehlting J, Ellis B, Gendler K, Goodstein D, Gribskov M, Grimwood J, Groover A, Gunter L, Hamberger B, Heinze B, Helariutta Y, Henrissat B, Holligan D, Holt R, Huang W, Islam-Faridi N, Jones S, Jones-Rhoades M, Jorgensen R, Joshi C, Kangasjarvi J, Karlsson J, Kelleher C, Kirkpatrick R, Kirst M, Kohler A, Kalluri U, Larimer F, Leebens-Mack J, Leple JC, Locascio P, Lou Y, Lucas S, Martin F, Montanini B, Napoli C, Nelson DR, Nelson C, Nieminen K, Nilsson O, Pereda V, Peter G, Philippe R, Pilate G, Poliakov A, Razumovskaya J, Richardson P, Rinaldi C, Ritland K, Rouze P, Ryaboy D, Schmutz J, Schrader J, Segerman B, Shin H, Siddiqui A, Sterky F, Terry A, Tsai CJ, Uberbacher E, Unneberg P, Vahala J, Wall K, Wessler S, Yang G, Yin T, Douglas C, Marra M, Sandberg G, Van de Peer Y, Rokhsar D (2006) The genome of black cottonwood, Populus trichocarpa (Torr. & Gray). Science 313(5793):1596–1604.  https://doi.org/10.1126/science.1128691 CrossRefPubMedGoogle Scholar
  35. Van OJ (2006) JoinMap 4, software for the calculation of genetic linkage maps in experimental populations. Kyazma BV, WageningenGoogle Scholar
  36. Wang N, Wang Y, Tian F, King GJ, Zhang C, Long Y, Shi L, Meng J (2008) A functional genomics resource for Brassica napus: development of an EMS mutagenized population and discovery of FAE1 point mutations by TILLING. New Phytol 180(4):751–765.  https://doi.org/10.1111/j.1469-8137.2008.02619.x CrossRefPubMedGoogle Scholar
  37. Wang N, Qian W, Suppanz I, Wei L, Mao B, Long Y, Meng J, Muller AE, Jung C (2011) Flowering time variation in oilseed rape (Brassica napus L.) is associated with allelic variation in the FRIGIDA homologue BnaA.FRI.a. J Exp Bot 62(15):5641–5658.  https://doi.org/10.1093/jxb/err249 CrossRefPubMedPubMedCentralGoogle Scholar
  38. Wang N, Fang LC, Xin HP, Wang LJ, Li SH (2012) Construction of a high-density genetic map for grape using next generation restriction-site associated DNA sequencing. BMC Plant Biol.  https://doi.org/10.1186/1471-2229-12-148 Google Scholar
  39. Wang N, Chen B, Xu K, Gao G, Li F, Qiao J, Yan G, Li J, Li H, Wu X (2016) Association mapping of flowering time QTLs and insight into their contributions to rapeseed growth habits. Front Plant Sci 7:338.  https://doi.org/10.3389/fpls.2016.00338 PubMedPubMedCentralGoogle Scholar
  40. Wang NA, Cao P, Xia WX, Fang LC, Yu HY (2017) Identification and characterization of long non-coding RNAs in response to early infection by Melampsora larici-populina using genome-wide high-throughput RNA sequencing. Tree Genet Genomes.  https://doi.org/10.1007/s11295-017-1116-1 Google Scholar
  41. Wei Z, Zhang G, Du Q, Zhang J, Li B, Zhang D (2014) Association mapping for morphological and physiological traits in Populus simonii. BMC Genet 15(Suppl 1):S3.  https://doi.org/10.1186/1471-2156-15-S1-S3 CrossRefPubMedPubMedCentralGoogle Scholar
  42. Xia Z, Zhang S, Wen M, Lu C, Sun Y, Zou M, Wang W (2018) Construction of an ultrahigh-density genetic linkage map for Jatropha curcas L. and identification of QTL for fruit yield. Biotechnol Biofuels 11:3.  https://doi.org/10.1186/s13068-017-1004-9 CrossRefPubMedPubMedCentralGoogle Scholar
  43. Xiao D, Wang H, Basnet RK, Zhao J, Lin K, Hou X, Bonnema G (2014) Genetic dissection of leaf development in Brassica rapa using a genetical genomics approach. Plant Physiol 164(3):1309–1325.  https://doi.org/10.1104/pp.113.227348 CrossRefPubMedPubMedCentralGoogle Scholar
  44. Xu Y, Xu C, Xu S (2017) Prediction and association mapping of agronomic traits in maize using multiple omic data. Heredity 119(3):174–184.  https://doi.org/10.1038/hdy.2017.27 CrossRefPubMedGoogle Scholar
  45. Zeballos JL, Abidi W, Gimenez R, Monforte AJ, Moreno MA, Gogorcena Y (2016) Mapping QTLs associated with fruit quality traits in peach [Prunus persica (L.) Batsch] using SNP maps. Tree Genet Genomes 12(3):37.  https://doi.org/10.1007/s11295-016-0996-9 CrossRefGoogle Scholar
  46. Zhang ZM, Zhao MJ, Ding HP, Rong TZ, Pan GT (2006) QTL mapping analysis of plant height and ear height of maize (Zea mays L.). Genetika 42(3):391–396PubMedGoogle Scholar
  47. Zhao S, Zhao L, Liu F, Wu Y, Zhu Z, Sun C, Tan L (2016) NARROW AND ROLLED LEAF 2 regulates leaf shape, male fertility, and seed size in rice. J Integr Plant Biol 58(12):983–996.  https://doi.org/10.1111/jipb.12503 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.College of Horticulture and Forestry SciencesHuazhong Agricultural UniversityWuhanChina
  2. 2.Hubei Engineering Technology Research Center for Forestry InformationHuazhong Agricultural UniversityWuhanChina

Personalised recommendations