Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Jasmonic acid to boost secondary growth in hemp hypocotyl

Abstract

Main conclusion

The application of jasmonic acid results in an increased secondary growth, as well as additional secondary phloem fibres and higher lignin content in the hypocotyl of textile hemp (Cannabis sativa L.).

Secondary growth provides most of the wood in lignocellulosic biomass. Textile hemp (Cannabis sativa L.) is cultivated for its phloem fibres, whose secondary cell wall is rich in crystalline cellulose with a limited amount of lignin. Mature hemp stems and older hypocotyls are characterised by large blocks of secondary phloem fibres which originate from the cambium. This study aims at investigating the role of exogenously applied jasmonic acid on the differentiation of secondary phloem fibres. We show indeed that the exogenous application of this plant growth regulator on young hemp plantlets promotes secondary growth, differentiation of secondary phloem fibres, expression of lignin-related genes, and lignification of the hypocotyl. This work paves the way to future investigations focusing on the molecular network underlying phloem fibre development.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Abbreviations

JA:

Jasmonic acid

References

  1. Aloni R (2013) The role of hormones in controlling vascular differentiation. In: Fromm J (ed) Cellular aspects of wood formation. Springer, Berlin, pp 99–139. https://doi.org/10.1007/978-3-642-36491-4_4

  2. Aloni R, Tollier MT, Monties B (1990) The role of auxin and gibberellin in controlling lignin formation in primary phloem fibers and in xylem of Coleus blumei stems. Plant Physiol 94:1743–1747

  3. Altamura MM, Possenti M, Matteucci A, Baima S, Ruberti I, Morelli G (2001) Development of the vascular system in the inflorescence stem of Arabidopsis. New Phytol 151(2):381–389. https://doi.org/10.1046/j.0028-646x.2001.00188.x

  4. Barros J, Serk H, Granlund I, Pesquet E (2015) The cell biology of lignification in higher plants. Ann Bot 115(7):1053–1074

  5. Baucher M, El Jaziri M, Vandeputte O (2007) From primary to secondary growth: origin and development of the vascular system. J Exp Bot 58(13):3485–3501

  6. Behr M, Legay S, Zizková E, Motyka V, Dobrev PI, Hausman JF, Lutts S, Guerriero G (2016) Studying secondary growth and bast fiber development: the hemp hypocotyl peeks behind the wall. Front Plant Sci 7:1733. https://doi.org/10.3389/fpls.2016.01733

  7. Behr M, Legay S, Hausman JF, Lutts S, Guerriero G (2017) Molecular investigation of the stem snap point in textile hemp. Genes 8(12):363. https://doi.org/10.3390/genes8120363

  8. Behr M, Sergeant K, Leclercq C, Planchon S, Guignard C, Lenouvel A, Renaut J, Hausman JF, Lutts S, Guerriero G (2018) Insights into the molecular regulation of monolignol-derived product biosynthesis in the growing hemp hypocotyl. BMC Plant Biol 18(1):1–18. https://doi.org/10.1186/s12870-017-1213-1

  9. Blake AW, Marcus SE, Copeland JE, Blackburn RS, Knox JP (2008) In situ analysis of cell wall polymers associated with phloem fibre cells in stems of hemp, Cannabis sativa L. Planta 228(1):1–13. https://doi.org/10.1007/s00425-008-0713-5

  10. Brackmann K, Qi J, Gebert M, Jouannet V, Schlamp T, Grünwald K, Wallner ES, Novikova D, Levitsky V, Agustí J, Sanchez P, Lohmann J, Greb T (2018) Spatial specificity of auxin responses coordinates wood formation. Nat Commun 9:875. https://doi.org/10.1038/s41467-018-03256-2

  11. Chaffey N, Cholewa E, Regan S, Sundberg B (2002) Secondary xylem development in Arabidopsis: a model for wood formation. Physiol Plant 114:594–600. https://doi.org/10.1034/j.1399-3054.2002.1140413.x

  12. Davin N, Edger PP, Hefer CA, Mizrachi E, Schuetz M, Smets E, Myburg AA, Douglas CJ, Schranz ME, Lens F (2016) Functional network analysis of genes differentially expressed during xylogenesis in soc1ful woody Arabidopsis plants. Plant J 86(5):376–390. https://doi.org/10.1111/tpj.13157

  13. De Geyter N, Gholami A, Goormachtig S, Goossens A (2012) Transcriptional machineries in jasmonate-elicited plant secondary metabolism. Trends Plant Sci 17(6):349–359

  14. Didi V, Jackson P, Hejátko J (2015) Hormonal regulation of secondary cell wall formation. J Exp Bot 66(16):5015–5027

  15. Fernandez-Tendero E, Day A, Legros S, Habrant A, Hawkins S, Chabbert B (2017) Changes in hemp secondary fiber production related to technical fiber variability revealed by light microscopy and attenuated total reflectance Fourier transform infrared spectroscopy. PLoS One 12(6):e0179794. https://doi.org/10.1371/journal.pone.0179794

  16. Gorshkova T, Brutch N, Chabbert B, Deyholos M, Hayashi T, Lev-Yadun S, Mellerowicz EJ, Morvan C, Neutelings G, Pilate G (2012) Plant fiber formation: state of the art, recent and expected progress, and open questions. Crit Rev Plant Sci 31(3):201–228. https://doi.org/10.1080/07352689.2011.616096

  17. Guerriero G, Sergeant K, Hausman J-F (2013) Integrated-omics: a powerful approach to understanding the heterogeneous lignification of fibre crops. Int J Mol Sci 14(6):10958–10978

  18. Guerriero G, Behr M, Legay S, Mangeot-Peter L, Zorzan S, Ghoniem M, Hausman JF (2017) Transcriptomic profiling of hemp bast fibres at different developmental stages. Sci Rep 7(1):4961. https://doi.org/10.1038/s41598-017-05200-8

  19. Hatfield RD, Grabber J, Ralph J, Brei K (1999) Using the acetyl bromide assay to determine lignin concentrations in herbaceous plants: some cautionary notes. J Agric Food Chem 47(2):628–632. https://doi.org/10.1021/jf9808776

  20. Hentrich M, Sánchez-Parra B, Pérez-Alonsa MM, Carrasco Loba V, Carrillo L, Vicente-Carbajosa J, Medina J, Pollmann S (2013) YUCCA8 and YUCCA9 overexpression reveals a link between auxin signaling and lignification through the induction of ethylene biosynthesis. Plant Signal Behav 8(11):e26363. https://doi.org/10.4161/psb.26363

  21. Ko JH, Han KH, Park S, Yang J (2004) Plant body weight-induced secondary growth in Arabidopsis and its transcription phenotype revealed by whole-transcriptome profiling. Plant Physiol 135(2):1069–1083. https://doi.org/10.1104/pp.104.038844

  22. Kuroha T, Ueguchi C, Sakakibara H, Satoh S (2006) Cytokinin receptors are required for normal development of auxin-transporting vascular tissues in the hypocotyl but not in adventitious roots. Plant Cell Physiol 47(2):234–243

  23. Liu M, Fernando D, Daniel G, Madsen B, Meyer AS, Ale MT, Thygesen A (2015) Effect of harvest time and field retting duration on the chemical composition, morphology and mechanical properties of hemp fibers. Ind Crop Prod 69:29–39. https://doi.org/10.1016/j.indcrop.2015.02.010

  24. Luyckx M, Hausman JF, Lutts S, Guerriero G (2017) Silicon and plants: current knowledge and technological perspectives. Front Plant Sci. https://doi.org/10.3389/fpls.2017.00411

  25. Melzer S, Lens F, Gennen J, Vanneste S, Rohde A, Beeckman T (2008) Flowering-time genes modulate meristem determinacy and growth form in Arabidopsis thaliana. Nat Genet 40:1489–1492. https://doi.org/10.1038/ng.253

  26. Nieminen K, Blomster T, Helariutta Y, Mähönen AP (2015) Vascular cambium development. In: The Arabidopsis book (The American Society of Plant Biologists), pp e0177. https://doi.org/10.1199/tab.0177

  27. Pauwels L, Morreel K, De Witte E, Lammertyn F, Van Montagu M, Boerjan W, Inzé D, Goossens A (2008) Mapping methyl jasmonate-mediated transcriptional reprogramming of metabolism and cell cycle progression in cultured Arabidopsis cells. Proc Natl Acad Sci USA 105(4):1380–1385

  28. Ragni L, Greb T (2017) Secondary growth as a determinant of plant shape and form. Semin Cell Dev Biol 79:58–67. https://doi.org/10.1016/j.semcdb.2017.08.050

  29. Ragni L, Hardtke CS (2014) Small but thick enough—the Arabidopsis hypocotyl as a model to study secondary growth. Physiol Plant 151(2):164–171. https://doi.org/10.1111/ppl.12118

  30. Ragni L, Nieminen K, Pacheco-Villalobos D, Sibout R, Schwechheimer C, Hardtke CS (2011) Mobile gibberellin directly stimulates Arabidopsis hypocotyl xylem expansion. Plant Cell 23:1322–1336

  31. Roach MJ, Deyholos MK (2008) Microarray analysis of developing flax hypocotyls identifies novel transcripts correlated with specific stages of phloem fibre differentiation. Ann Bot 102(3):317–330

  32. Sakamoto S, Mitsuda N (2015) Reconstitution of a secondary cell wall in a secondary cell wall-deficient Arabidopsis mutant. Plant Cell Physiol 56(2):299–310

  33. Sánchez-Rodríguez C, Rubio-Somoza I, Sibout R, Persson S (2010) Phytohormones and the cell wall in Arabidopsis during seedling growth. Trends Plant Sci 15(5):291–301

  34. Schuetz M, Smith R, Ellis B (2013) Xylem tissue specification, patterning, and differentiation mechanisms. J Exp Bot 64(1):11–31

  35. Sehr EM, Agusti J, Lehner R, Farmer EE, Schwarz M, Greb T (2010) Analysis of secondary growth in the Arabidopsis shoot reveals a positive role of jasmonate signalling in cambium formation. Plant J 63(5):811–822

  36. Sibout R, Plantegenet S, Hardtke CS (2008) Flowering as a condition for xylem expansion in Arabidopsis hypocotyl and root. Curr Biol 18:458–463

  37. Snegireva A, Chernova T, Ageeva M, Lev-Yadun S, Gorshkova T (2015) Intrusive growth of primary and secondary phloem fibres in hemp stem determines fibre-bundle formation and structure. AoB Plants 7(1):plv061. https://doi.org/10.1093/aobpla/plv061

  38. Strabala TJ, MacMillan CP (2013) The Arabidopsis wood model—the case for the inflorescence stem. Plant Sci 210(Supplement C):193–205. https://doi.org/10.1016/j.plantsci.2013.05.007

  39. Suer S, Agusti J, Sanchez P, Schwarz M, Greb T (2011) WOX4 imparts auxin responsiveness to cambium cells in Arabidopsis. Plant Cell 23(9):3247–3259. https://doi.org/10.1105/tpc.111.087874

  40. Sundell D, Street NR, Kumar M, Mellerowicz EJ, Kucukoglu M, Johnsson C, Kumar V, Mannapperuma C, Delhomme N, Nilsson O, Tuominen H, Pesquet E, Fischer U, Niittylä T, Sundberg B, Hvidsten TR (2017) AspWood: high-spatial-resolution transcriptome profiles reveal uncharacterized modularity of wood formation in Populus tremula. Plant Cell 29(7):1585–1604. https://doi.org/10.1105/tpc.17.00153

  41. Tamaoki D, Karahara I, Nishiuchi T, Wakasugi T, Yamada K, Kamisaka S (2011) Involvement of auxin dynamics in hypergravity-induced promotion of lignin-related gene expression in Arabidopsis inflorescence stems. J Exp Bot 62(15):5463–5469. https://doi.org/10.1093/jxb/err224

  42. Ursache R, Nieminen K, Helariutta Y (2013) Genetic and hormonal regulation of cambial development. Physiol Plant 147(1):36–45. https://doi.org/10.1111/j.1399-3054.2012.01627.x

  43. Wang HZ, Dixon RA (2012) On–off switches for secondary cell wall biosynthesis. Mol Plant 5(2):297–303

  44. Zhong R, Ye ZH (2012) MYB46 and MYB83 bind to the SMRE sites and directly activate a suite of transcription factors and secondary wall biosynthetic genes. Plant Cell Physiol 53(2):368–380

  45. Zhou M, Memelink J (2016) Jasmonate-responsive transcription factors regulating plant secondary metabolism. Biotechnol Adv 34(4):441–449

Download references

Acknowledgements

The authors acknowledge the Fonds National de la Recherche, Luxembourg (Project CANCAN C13/SR/5774202) for partial financial support.

Author information

Correspondence to Gea Guerriero.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLSX 21 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Behr, M., Lutts, S., Hausman, J. et al. Jasmonic acid to boost secondary growth in hemp hypocotyl. Planta 248, 1029–1036 (2018). https://doi.org/10.1007/s00425-018-2951-5

Download citation

Keywords

  • Bast fibre
  • Cambium
  • Cell wall
  • Gene expression
  • Lignin