Advertisement

Planta

, Volume 248, Issue 5, pp 1079–1099 | Cite as

Proteomic discovery of H2O2 response in roots and functional characterization of PutGLP gene from alkaligrass

  • Juanjuan Yu
  • Yongxue Zhang
  • Junming Liu
  • Lin Wang
  • Panpan Liu
  • Zepeng Yin
  • Siyi Guo
  • Jun Ma
  • Zhuang Lu
  • Tai Wang
  • Yimin She
  • Yuchen Miao
  • Ling Ma
  • Sixue Chen
  • Ying Li
  • Shaojun Dai
Original Article

Abstract

Main conclusion

Hydrogen peroxide-responsive pathways in roots of alkaligrass analyzed by proteomic studies and PutGLP enhance the plant tolerance to saline-, alkali- and cadmium-induced oxidative stresses.

Oxidative stress adaptation is critical for plants in response to various stress environments. The halophyte alkaligrass (Puccinellia tenuiflora) is an outstanding pasture with strong tolerance to salt and alkali stresses. In this study, iTRAQ- and 2DE-based proteomics approaches, as well as qRT-PCR and molecular genetics, were employed to investigate H2O2-responsive mechanisms in alkaligrass roots. The evaluation of membrane integrity and reactive oxygen species (ROS)-scavenging systems, as well as abundance patterns of H2O2-responsive proteins/genes indicated that Ca2+-mediated kinase signaling pathways, ROS homeostasis, osmotic modulation, and transcriptional regulation were pivotal for oxidative adaptation in alkaligrass roots. Overexpressing a P. tenuiflora germin-like protein (PutGLP) gene in Arabidopsis seedlings revealed that the apoplastic PutGLP with activities of oxalate oxidase and superoxide dismutase was predominantly expressed in roots and played important roles in ROS scavenging in response to salinity-, alkali-, and CdCl2-induced oxidative stresses. The results provide insights into the fine-tuned redox-responsive networks in halophyte roots.

Keywords

Germin-like protein Hydrogen peroxide response Proteomics Puccinellia tenuiflora Roots Signaling 

Abbreviations

APX

Ascorbate peroxidase

CAT

Catalase

DHAR

Dehydroascorbate reductase

GLP

Germin-like protein

GPX

Glutathione peroxidase

GST

Glutathione S-transferase

HRP

H2O2-responsive protein

MDHAR

Monodehydroascorbate reductase

MHT

mM H2O2 treatments for 6 h

OXO

Oxalate oxidase

POD

Peroxidase

ROS

Reactive oxygen species

SOD

Superoxide dismutase

Notes

Acknowledgements

The project was supported by Grants from the National Key Research and Development Program (2017YFD0600101) to Ling Ma, the Fundamental Research Funds for the Central Universities (2572017ET01, 2572017EA05, and 2572016AA16) to Shaojun Dai, Ying Li, and Juanjuan Yu, as well as the Foundation of Shanghai Science and Technology Committee, China (17391900600) to Shaojun Dai.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflicts of interest.

Supplementary material

425_2018_2940_MOESM1_ESM.docx (9.7 mb)
Supplementary material 1 (DOCX 9916 kb)
425_2018_2940_MOESM2_ESM.docx (2.6 mb)
Supplementary material 2 (DOCX 2677 kb)
425_2018_2940_MOESM3_ESM.docx (1 mb)
Supplementary material 3 (DOCX 1028 kb)
425_2018_2940_MOESM4_ESM.docx (368 kb)
Supplementary material 4 (DOCX 368 kb)
425_2018_2940_MOESM5_ESM.xlsx (2.6 mb)
Supplementary material 5 (XLSX 2619 kb)
425_2018_2940_MOESM6_ESM.xlsx (10 kb)
Supplementary material 6 (XLSX 9 kb)
425_2018_2940_MOESM7_ESM.xlsx (82 kb)
Supplementary material 7 (XLSX 82 kb)
425_2018_2940_MOESM8_ESM.xls (148 kb)
Supplementary material 8 (XLS 148 kb)
425_2018_2940_MOESM9_ESM.xlsx (13 kb)
Supplementary material 9 (XLSX 12 kb)
425_2018_2940_MOESM10_ESM.docx (59 kb)
Supplementary material 10 (DOCX 58 kb)
425_2018_2940_MOESM11_ESM.xlsx (50 kb)
Supplementary material 11 (XLSX 50 kb)
425_2018_2940_MOESM12_ESM.xlsx (1.9 mb)
Supplementary material 12 (XLSX 1970 kb)
425_2018_2940_MOESM13_ESM.xlsx (6.4 mb)
Supplementary material 13 (XLSX 6600 kb)

References

  1. Ahn CS, Lee JH, Hwang AR, Kim WT, Pai HS (2006) Prohibitin is involved in mitochondrial biogenesis in plants. Plant J 46:658–667.  https://doi.org/10.1111/j.1365-313X.2006.02726.x CrossRefPubMedPubMedCentralGoogle Scholar
  2. Ardie SW, Xie L, Takahashi R, Liu S, Takano T (2009) Cloning of a high-affinity K+ transporter gene PutHKT2;1 from Puccinellia tenuiflora and its functional comparison with OsHKT2;1 from rice in yeast and Arabidopsis. J Exp Bot 60:3491–3502.  https://doi.org/10.1093/jxb/erp184 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Ardie SW, Liu S, Takano T (2010) Expression of the AKT1-type K+ channel gene from Puccinellia tenuiflora, PutAKT1, enhances salt tolerance in Arabidopsis. Plant Cell Rep 29:865–874.  https://doi.org/10.1007/s00299-010-0872-2 CrossRefPubMedPubMedCentralGoogle Scholar
  4. Balazadeh S, Siddiqui H, Allu A, MatallanaRamirez L, Caldana C, Mehrnia M, Zanor M, Köhler B, MuellerRoeber B (2010) A gene regulatory network controlled by the NAC transcription factor ANAC092/AtNAC2/ORE1 during salt-promoted senescence. Plant J 62:250–264.  https://doi.org/10.1111/j.1365-313X.2010.04151.x CrossRefPubMedPubMedCentralGoogle Scholar
  5. Balazadeh S, Kwasniewski M, Caldana C, Mehrnia M, Zanor MI, Xue G-P, Mueller-Roeber B (2011) ORS1, an H2O2-responsive NAC transcription factor, controls senescence in Arabidopsis thaliana. Mol Plant 4:346–360.  https://doi.org/10.1093/mp/ssq080 CrossRefPubMedPubMedCentralGoogle Scholar
  6. Banerjee J, Magnani R, Nair M, Dirk L, DeBolt S, Maiti I, Houtz R (2013) Calmodulin-mediated signal transduction pathways in Arabidopsis are fine-tuned by methylation. Plant Cell 25:4493–4511.  https://doi.org/10.1105/tpc.113.119115 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Benabdellah K, Ruiz-Lozano JM, Aroca R (2009) Hydrogen peroxide effects on root hydraulic properties and plasma membrane aquaporin regulation in Phaseolus vulgaris. Plant Mol Biol 70:647–661.  https://doi.org/10.1007/s11103-009-9497-7 CrossRefPubMedPubMedCentralGoogle Scholar
  8. Bian YW, Lv DW, Cheng ZW, Gu AQ, Cao H, Yan YM (2015) Integrative proteome analysis of Brachypodium distachyon roots and leaves reveals a synergetic responsive network under H2O2 stress. J Proteom 128:388–402.  https://doi.org/10.1016/j.jprot.2015.08.020 CrossRefGoogle Scholar
  9. Bienert GP, Schjoerring JK, Jahn TP (2006) Membrane transport of hydrogen peroxide. Biochim Biophys Acta 1758:994–1003.  https://doi.org/10.1016/j.bbamem.2006.02.015 CrossRefPubMedPubMedCentralGoogle Scholar
  10. Bienert GP, Møller AL, Kristiansen KA, Schulz A, Møller IM, Schjoerring JK, Jahn TP (2007) Specific aquaporins facilitate the diffusion of hydrogen peroxide across membranes. J Biol Chem 282:1183–1192.  https://doi.org/10.1074/jbc.M603761200 CrossRefPubMedGoogle Scholar
  11. Boscariol-Camargo RL, Berger IJ, Souza AA, Amaral AMD, Carlos EF, Freitas-Astúa J, Takita MA, Targon MLPN, Medina CL, Reis MS (2007) In silico analysis of ESTs from roots of Rangpur lime (Citrus limonia Osbeck) under water stress. Genet Mol Biol 30:906–916.  https://doi.org/10.1590/S1415-47572007000500019 CrossRefGoogle Scholar
  12. Boursiac Y, Boudet J, Postaire O, Luu D-T, Tournaire-Roux C, Maurel C (2008) Stimulus-induced downregulation of root water transport involves reactive oxygen species-activated cell signalling and plasma membrane intrinsic protein internalization. Plant J 56:207–218.  https://doi.org/10.1111/j.1365-313X.2008.03594.x CrossRefPubMedPubMedCentralGoogle Scholar
  13. Carolino SM, Cascardo JC, Nunes CC, Fontes EP, Alvim FC, Martinez CA, Otoni WC (2001) Enhanced accumulation of BiP in transgenic plants confers tolerance to water stress. Plant Physiol 126:1042–1054.  https://doi.org/10.1104/pp.126.3.1042 CrossRefPubMedPubMedCentralGoogle Scholar
  14. Chang JC, Liao YC, Yang CC, Wang AY (2011) The purine-rich DNA-binding protein OsPurα participates in the regulation of the rice sucrose synthase 1 gene expression. Physiol Plant 143:219–234.  https://doi.org/10.1111/j.1399-3054.2011.01501.x CrossRefPubMedPubMedCentralGoogle Scholar
  15. Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743.  https://doi.org/10.1046/j.1365-313x.1998.00343.x CrossRefPubMedGoogle Scholar
  16. Dai S, Chen S (2014) Understanding information processes at the proteomics level. In: Kasabov N (ed) Springer handbook of bio-/neuroinformatics. Springer, Berlin, pp 57–72.  https://doi.org/10.1007/978-3-642-30574-0_5 CrossRefGoogle Scholar
  17. Dai S, Chen T, Chong K, Xue Y, Liu S, Wang T (2007) Proteomics identification of differentially expressed proteins associated with pollen germination and tube growth reveals characteristics of germinated Oryza sativa pollen. Mol Cell Proteom 6:207–230.  https://doi.org/10.1074/mcp.M600146-MCP200 CrossRefGoogle Scholar
  18. Desikan R, Mackerness SA-H, Hancock JT, Neill SJ (2001) Regulation of the Arabidopsis transcriptome by oxidative stress. Plant Physiol 127:159–172.  https://doi.org/10.1104/pp.127.1.159 CrossRefPubMedPubMedCentralGoogle Scholar
  19. Dietz KJ, Tavakoli N, Kluge C, Mimura T, Sharma SS, Harris GC, Chardonnens AN, Golldack D (2001) Significance of the V-type ATPase for the adaptation to stressful growth conditions and its regulation on the molecular and biochemical level. J Exp Bot 52:1969–1980.  https://doi.org/10.1093/jexbot/52.363.1969 CrossRefPubMedPubMedCentralGoogle Scholar
  20. Forzani C, Carreri A, de la Fuente van Bentem S, Lecourieux S, Lecourieux F, Hirt H (2011) The Arabidopsis protein kinase Pto-interacting 1-4 is a common target of the oxidative signal-inducible 1 and mitogen-activated protein kinases. FEBS J 278:1126–1136.  https://doi.org/10.1111/j.1742-4658.2011.08033.x CrossRefGoogle Scholar
  21. Fu J, Momčilović I, Prasad PVV (2012) Roles of protein synthesis elongation factor EF-Tu in heat tolerance in plants. J Bot 2012:835836.  https://doi.org/10.1155/2012/835836 CrossRefGoogle Scholar
  22. Ge Y, Li Y, Zhu YM, Bai X, Lv DK, Guo D, Ji W, Cai H (2010) Global transcriptome profiling of wild soybean (Glycine soja) roots under NaHCO3 treatment. BMC Plant Biol 10:153.  https://doi.org/10.1186/1471-2229-10-153 CrossRefPubMedPubMedCentralGoogle Scholar
  23. Ge P, Hao PC, Cao M, Guo GF, Lv DW, Subburaj S, Li XH, Yan X, Xiao JT, Ma WJ (2013) iTRAQ-based quantitative proteomic analysis reveals new metabolic pathways of wheat seedling growth under hydrogen peroxide stress. Proteomics 13:3046–3058.  https://doi.org/10.1002/pmic.201300042 CrossRefPubMedPubMedCentralGoogle Scholar
  24. Gémes K, Poór P, Horváth E, Kolbert Z, Szopkó D, Szepesi Á, Tari I (2011) Cross-talk between salicylic acid and NaCl-generated reactive oxygen species and nitric oxide in tomato during acclimation to high salinity. Physiol Plant 142:179–192.  https://doi.org/10.1111/j.1399-3054.2011.01461.x CrossRefPubMedPubMedCentralGoogle Scholar
  25. Gu Y, Deng Z, Paredez AR, Debolt S, Wang ZY, Somerville C (2008) Prefoldin 6 is required for normal microtubule dynamics and organization in Arabidopsis. Proc Natl Acad Sci USA 105:18064–18069.  https://doi.org/10.1073/pnas.0808652105 CrossRefPubMedPubMedCentralGoogle Scholar
  26. Guan Q, Wang Z, Wang X, Takano T, Liu S (2015) A peroxisomal APX from Puccinellia tenuiflora improves the abiotic stress tolerance of transgenic Arabidopsis thaliana through decreasing of H2O2 accumulation. J Plant Physiol 175:183–191.  https://doi.org/10.1016/j.jplph.2014.10.020 CrossRefPubMedPubMedCentralGoogle Scholar
  27. Guo LQ, Shi DC, Wang DL (2010) The key physiological response to alkali stress by the alkali-resistant halophyte Puccinellia tenuiflora is the accumulation of large quantities of organic acids and into the rhyzosphere. J Agron Crop Sci 196:123–135.  https://doi.org/10.1111/j.1439-037X.2009.00397.x CrossRefGoogle Scholar
  28. Ham BK, Li G, Kang BH, Zeng F, Lucas WJ (2012) Overexpression of Arabidopsis plasmodesmata germin-like proteins disrupts root growth and development. Plant Cell 24:3630–3648.  https://doi.org/10.1105/tpc.112.101063 CrossRefPubMedPubMedCentralGoogle Scholar
  29. Hung SH, Yu CW, Lin CH (2005) Hydrogen peroxide functions as a stress signal in plants. Bot Bull Acad Sin 46:1–10Google Scholar
  30. Jiang Y, Yang B, Harris N, Deyholos M (2007) Comparative proteomic analysis of NaCl stress-responsive proteins in Arabidopsis roots. J Exp Bot 58:3591–3607.  https://doi.org/10.1093/jxb/erm207 CrossRefPubMedPubMedCentralGoogle Scholar
  31. Kobayashi S, Abe N, Yoshida KT, Liu S, Takano T (2012) Molecular cloning and characterization of plasma membrane- and vacuolar-type Na+/H+ antiporters of an alkaline-salt-tolerant monocot, Puccinellia tenuiflora. J Plant Res 125:587–594.  https://doi.org/10.1007/s10265-012-0475-9 CrossRefPubMedPubMedCentralGoogle Scholar
  32. Kobayashi S, Satone H, Tan E, Kurokochi H, Asakawa S, Liu S, Takano T (2014) Transcriptional responses of a bicarbonate-tolerant monocot, Puccinellia tenuiflora, and a related bicarbonate-sensitive species, Poa annua, to NaHCO3 stress. Int J Mol Sci 16:496–509.  https://doi.org/10.3390/ijms16010496 CrossRefPubMedPubMedCentralGoogle Scholar
  33. Li HS, Sun Q, Zhao SJ, Zhang WH (2000) Principles and techniques of plant physiological biochemical experiment. Higher Education, Beijing, pp 186–191Google Scholar
  34. Li D, Liu H, Zhang H, Wang X, Song F (2008) OsBIRH1, a DEAD-box RNA helicase with functions in modulating defence responses against pathogen infection and oxidative stress. J Exp Bot 59:2133–2146.  https://doi.org/10.1093/jxb/ern072 CrossRefPubMedPubMedCentralGoogle Scholar
  35. Li HY, Jing J, Shan W, Liu FF (2010) Expression analysis of ThGLP, a new germin-like protein gene, in Tamarix hispida. J For Res 21:323–330.  https://doi.org/10.1007/s11676-010-0078-z CrossRefGoogle Scholar
  36. Li AL, Zhang RZ, Pan L, Tang LC, Zhao GG, Zhu MZ, Chu JF, Sun XH, Wei B, Zhang XQ, Jia JZ, Mao L (2011) Transcriptome analysis of H2O2-treated wheat seedlings reveals a H2O2-responsive fatty acid desaturase gene participating in powdery mildew resistance. PLoS One 6:e28810.  https://doi.org/10.1371/journal.pone.0028810 CrossRefPubMedPubMedCentralGoogle Scholar
  37. Li Y, Liu P, Tetsuo T, Liu S (2016) A chloroplast-localized rubredoxin family protein gene from Puccinellia tenuiflora (PutRUB) increases NaCl and NaHCO3 tolerance by decreasing H2O2 accumulation. Int J Mol Sci 17:804.  https://doi.org/10.3390/ijms17060804 CrossRefGoogle Scholar
  38. Ma J, Wang D, She J, Li J, Zhu JK, She YM (2016) Endoplasmic reticulum-associated N-glycan degradation of cold-upregulated glycoproteins in response to chilling stress in Arabidopsis. New Phytol 212:282–296.  https://doi.org/10.1111/nph.14014 CrossRefPubMedPubMedCentralGoogle Scholar
  39. Meng W, Hsiao AS, Gao C, Jiang L, Chye ML (2014) Subcellular localization of rice acyl-CoA-binding proteins (ACBPs) indicates that OsACBP6:GFP is targeted to the peroxisomes. New Phytol 203:469–482.  https://doi.org/10.1111/nph.12809 CrossRefPubMedPubMedCentralGoogle Scholar
  40. Miller G, Suzuki N, Ciftci-Yilmaz S, Mittler R (2010) Reactive oxygen species homeostasis and signalling during drought and salinity stresses. Plant Cell Environ 33:453–467.  https://doi.org/10.1111/j.1365-3040.2009.02041.x CrossRefGoogle Scholar
  41. Mittler R (2017) ROS are good. Trends Plant Sci 22:11–19.  https://doi.org/10.1016/j.tplants.2016.08.002 CrossRefGoogle Scholar
  42. Moon H, Lee B, Choi G, Moon H, Lee B, Choi G, Shin D, Prasad DT, Lee O, Kwak S-S, Kim DH, Nam J, Bahk J, Hong JC, Lee SY, Cho MJ, Lim CO, Yun DJ (2003) NDP kinase 2 interacts with two oxidative stress-activated MAPKs to regulate cellular redox state and enhances multiple stress tolerance in transgenic plants. Proc Natl Acad Sci USA 100:358–363.  https://doi.org/10.1073/pnas.252641899 CrossRefPubMedPubMedCentralGoogle Scholar
  43. Neill S, Desikan R, Hancock J (2002) Hydrogen peroxide signalling. Curr Opin Plant Biol 5:388–395.  https://doi.org/10.1016/S1369-5266(02)00282-0 CrossRefPubMedPubMedCentralGoogle Scholar
  44. Nijtmans LGJ, Jong LD, Sanz MA, Coates PJ, Berden JA, Back JW, Muijsers AO, Spek HVD, Grivell LA (2000) Prohibitins act as a membrane-bound chaperone for the stabilization of mitochondrial proteins. EMBO J 19:2444–2451.  https://doi.org/10.1093/emboj/19.11.2444 CrossRefPubMedPubMedCentralGoogle Scholar
  45. Nohzadeh MS, Habibi RM, Heidari M, Salekdeh GH (2007) Proteomics reveals new salt responsive proteins associated with rice plasma membrane. Biosci Biotechnol Biochem 71:2144–2154.  https://doi.org/10.1271/bbb.70027 CrossRefGoogle Scholar
  46. Pejchal R, Ludwig ML (2004) Cobalamin-independent methionine synthase (MetE): a face-to-face double barrel that evolved by gene duplication. PLoS Biol 3:e31.  https://doi.org/10.1371/journal.pbio.0030031 CrossRefPubMedPubMedCentralGoogle Scholar
  47. Peng YH, Zhu YF, Mao YQ, Wang SM, Su WA, Tang ZC (2004) Alkali grass resists salt stress through high K+ and an endodermis barrier to Na+. J Exp Bot 55:939–949.  https://doi.org/10.1093/jxb/erh071 CrossRefPubMedPubMedCentralGoogle Scholar
  48. Petrov VD, Van Breusegem F (2012) Hydrogen peroxide-a central hub for information flow in plant cells. AoB Plants 2012:pls014.  https://doi.org/10.1093/aobpla/pls014 CrossRefPubMedPubMedCentralGoogle Scholar
  49. Robinson S, Slade A, Fox G, Phillips R, Ratcliffe R, Stewart G (1991) The role of glutamate dehydrogenase in plant nitrogen metabolism. Plant Physiol 95:509–516.  https://doi.org/10.1104/pp.95.2.509 CrossRefPubMedPubMedCentralGoogle Scholar
  50. Schweighofer A, Hirt H, Meskiene I (2004) Plant PP2C phosphatases: emerging functions in stress signaling. Trends Plant Sci 9:236–243.  https://doi.org/10.1016/j.tplants.2004.03.007 CrossRefPubMedPubMedCentralGoogle Scholar
  51. Suo J, Zhao Q, Zhang Z, Chen S, Cao J, Liu G, Wei X, Wang T, Yang C, Dai S (2015) Cytological and proteomic analyses of Osmunda cinnamomea germinating spores reveal characteristics of fern spore germination and rhizoid tip-growth. Mol Cell Proteom 14:2510–2534.  https://doi.org/10.1074/mcp.M114.047225 CrossRefGoogle Scholar
  52. Suzuki H, Ueda T, Taguchi H, Takeuchi N (2007) Chaperone properties of mammalian mitochondrial translation elongation factor Tu. J Biol Chem 282:4076–4084.  https://doi.org/10.1074/jbc.M608187200 CrossRefPubMedPubMedCentralGoogle Scholar
  53. Tanou G, Job C, Rajjou L, Arc E, Belghazi M, Diamantidis G, Molassiotis A, Job D (2009) Proteomics reveals the overlapping roles of hydrogen peroxide and nitric oxide in the acclimation of citrus plants to salinity. Plant J 60:795–804.  https://doi.org/10.1111/j.1365-313X.2009.04000.x CrossRefPubMedPubMedCentralGoogle Scholar
  54. Tanou G, Job C, Belghazi M, Molassiotis A, Diamantidis G, Job D (2010) Proteomic signatures uncover hydrogen peroxide and nitric oxide cross-talk signaling network in citrus plants. J Proteome Res 9:5994–6006.  https://doi.org/10.1021/pr100782h CrossRefPubMedPubMedCentralGoogle Scholar
  55. Valente MAS, Faria JAQA, Soares-Ramos JRL, Reis PAB, Pinheiro GL, Piovesan ND, Morais AT, Menezes CC, Cano MAO, Fietto LG, Loureiro ME, Aragão FJ, Fontes EP (2009) The ER luminal binding protein (BiP) mediates an increase in drought tolerance in soybean and delays drought-induced leaf senescence in soybean and tobacco. J Exp Bot 60:533–546.  https://doi.org/10.1093/jxb/ern296 CrossRefPubMedPubMedCentralGoogle Scholar
  56. Vandenabeele S, Van Der Kelen K, Dat J, Gadjev I, Boonefaes T, Morsa S, Rottiers P, Slooten L, Van Montagu M, Zabeau M, Inze D, Van Breusegem F (2003) A comprehensive analysis of hydrogen peroxide-induced gene expression in tobacco. Proc Natl Acad Sci USA 100:16113–16118.  https://doi.org/10.1073/pnas.2136610100 CrossRefPubMedPubMedCentralGoogle Scholar
  57. Vanderauwera S, Zimmermann P, Rombauts S, Vandenabeele S, Langebartels C, Gruissem W, Inze D, Van Breusegem F (2005) Genome-wide analysis of hydrogen peroxide-regulated gene expression in Arabidopsis reveals a high light-induced transcriptional cluster involved in anthocyanin biosynthesis. Plant Physiol 139:806–821.  https://doi.org/10.1104/pp.105.065896 CrossRefPubMedPubMedCentralGoogle Scholar
  58. Wan XY, Liu JY (2008) Comparative proteomics analysis reveals an intimate protein network provoked by hydrogen peroxide stress in rice seedling leaves. Mol Cell Proteom 7:1469–1488.  https://doi.org/10.1074/mcp.M700488-MCP200 CrossRefGoogle Scholar
  59. Wang MC, Peng ZY, Li CL, Li F, Liu C, Xia GM (2008) Proteomic analysis on a high salt tolerance introgression strain of Triticum aestivum/Thinopyrum ponticum. Proteomics 8:1470–1489.  https://doi.org/10.1002/pmic.200700569 CrossRefPubMedPubMedCentralGoogle Scholar
  60. Wang CM, Zhang JL, Liu XS, Li Z, Wu GQ, Cai JY, Flowers TJ, Wang SM (2009) Puccinellia tenuiflora maintains a low Na+ level under salinity by limiting unidirectional Na+ influx resulting in a high selectivity for K+ over Na+. Plant Cell Environ 32:486–496.  https://doi.org/10.1111/j.1365-3040.2009.01942.x CrossRefPubMedPubMedCentralGoogle Scholar
  61. Wang X, Chen S, Zhang H, Shi L, Cao F, Guo L, Xie Y, Wang T, Yan X, Dai S (2010) Desiccation tolerance mechanism in resurrection fern-ally Selaginella tamariscina revealed by physiological and proteomic analysis. J Proteome Res 9:6561–6577.  https://doi.org/10.1021/pr100767k CrossRefPubMedPubMedCentralGoogle Scholar
  62. Wang X, Yang R, Wang B, Liu G, Yang C, Cheng Y (2011) Functional characterization of a plasma membrane Na+/H+ antiporter from alkali grass (Puccinellia tenuiflora). Mol Biol Rep 38:4813–4822.  https://doi.org/10.1007/s11033-010-0624-y CrossRefGoogle Scholar
  63. Wei S, Bian Y, Zhao Q, Chen S, Mao J, Song C, Cheng K, Xiao Z, Zhang C, Ma W, Zou H, Ye M, Dai S (2017) Salinity-induced palmella formation mechanism in halotolerant algae Dunaliella salina revealed by quantitative proteomics and phosphoproteomics. Front Plant Sci 8:810.  https://doi.org/10.3389/fpls.2017.00810 CrossRefPubMedPubMedCentralGoogle Scholar
  64. Xia C, Wang YJ, Li WQ, Chen YR, Deng Y, Zhang XQ, Chen LQ, Ye D (2010) The Arabidopsis eukaryotic translation initiation factor 3, subunit F (AteIF3f), is required for pollen germination and embryogenesis. Plant J 63:189–202.  https://doi.org/10.1111/j.1365-313X.2010.04237.x CrossRefPubMedPubMedCentralGoogle Scholar
  65. Yang SL, Lan SS, Gong M (2009) Hydrogen peroxide-induced proline and metabolic pathway of its accumulation in maize seedlings. J Plant Physiol 166:1694–1699.  https://doi.org/10.1016/j.jplph.2009.04.006 CrossRefPubMedPubMedCentralGoogle Scholar
  66. Yang L, Ma C, Wang L, Chen S, Li H (2012) Salt stress induced proteome and transcriptome changes in sugar beet monosomic addition line M14. J Plant Physiol 169:839–850.  https://doi.org/10.1016/j.jplph.2012.01.023 CrossRefPubMedPubMedCentralGoogle Scholar
  67. Yoo SD, Cho YH, Sheen J (2007) Arabidopsis mesophyll protoplasts: a versatile cell system for transient gene expression analysis. Nat Protoc 2:1565–1572.  https://doi.org/10.1038/nprot.2007.199 CrossRefGoogle Scholar
  68. Yu J, Chen S, Zhao Q, Wang T, Yang C, Diaz C, Sun G, Dai S (2011) Physiological and proteomic analysis of salinity tolerance in Puccinellia tenuiflora. J Proteome Res 10:3852–3870.  https://doi.org/10.1021/pr101102p CrossRefPubMedPubMedCentralGoogle Scholar
  69. Yu J, Chen S, Wang T, Sun G, Dai S (2013) Comparative proteomic analysis of Puccinellia tenuiflora leaves under Na2CO3 stress. I. Int J Mol Sci 14:1740–1762.  https://doi.org/10.3390/ijms14011740 CrossRefPubMedPubMedCentralGoogle Scholar
  70. Yu AM, Li P, Tang T, Wang JC, Chen Y, Liu L (2015) Roles of Hsp70 s in stress responses of microorganisms, plants, and animals. Biomed Res Int 2015:510319.  https://doi.org/10.1155/2015/510319 CrossRefPubMedPubMedCentralGoogle Scholar
  71. Yu J, Jin X, Sun X, Gao T, Chen X, She Y, Jiang T, Chen S, Dai S (2017) Hydrogen peroxide response in leaves of poplar (Populus simonii × Populus nigra) revealed from physiological and proteomic analyses. Int J Mol Sci 18:2085.  https://doi.org/10.3390/ijms18102085 CrossRefGoogle Scholar
  72. Zhang Z, Yang J, Collinge DB, Thordal-Christensen H (1996) Ethanol increases sensitivity of oxalate oxidase assays and facilitates direct activity staining in SDS gels. Plant Mol Biol Rep 14:266–272.  https://doi.org/10.1007/BF02671662 CrossRefGoogle Scholar
  73. Zhang CQ, Nishiuchi S, Liu SK, Takano T (2008) Characterization of two plasma membrane protein 3 genes (PutPMP3) from the alkali grass, Puccinellia tenuiflora, and functional comparison of the rice homologues, OsLti6a/b from rice. BMB Rep 41:448–454.  https://doi.org/10.5483/BMBRep.2008.41.6.448 CrossRefGoogle Scholar
  74. Zhang H, Han B, Wang T, Chen S, Li H, Zhang Y, Dai S (2011) Mechanisms of plant salt response: insights from proteomics. J Proteome Res 11:49–67.  https://doi.org/10.1021/pr200861w CrossRefPubMedPubMedCentralGoogle Scholar
  75. Zhang X, Wei L, Wang Z, Wang T (2013) Physiological and molecular features of Puccinellia tenuiflora tolerating salt and alkaline-salt stress. J Integr Plant Biol 55:262–276.  https://doi.org/10.1111/jipb.12013 CrossRefPubMedPubMedCentralGoogle Scholar
  76. Zhao Q, Suo J, Chen S, Jin Y, Ma X, Yin Z, Zhang Y, Wang T, Luo J, Jin W (2016) Na2CO3-responsive mechanisms in halophyte Puccinellia tenuiflora roots revealed by physiological and proteomic analyses. Sci Rep 6:32717.  https://doi.org/10.1038/srep32717 CrossRefPubMedPubMedCentralGoogle Scholar
  77. Zhou L, Bokhari SA, Dong C, Liu J (2011) Comparative proteomics analysis of the root apoplasts of rice seedlings in response to hydrogen peroxide. PLoS One 6:e16723.  https://doi.org/10.1371/journal.pone.0016723 CrossRefPubMedPubMedCentralGoogle Scholar
  78. Zhu Y, Dong A, Shen WH (2012) Histone variants and chromatin assembly in plant abiotic stress responses. Biochim Biophys Acta 1819:343–348.  https://doi.org/10.1016/j.bbagrm.2011.07.012 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Juanjuan Yu
    • 1
    • 2
  • Yongxue Zhang
    • 1
    • 2
  • Junming Liu
    • 1
  • Lin Wang
    • 1
  • Panpan Liu
    • 1
  • Zepeng Yin
    • 1
  • Siyi Guo
    • 3
  • Jun Ma
    • 4
  • Zhuang Lu
    • 5
  • Tai Wang
    • 5
  • Yimin She
    • 4
  • Yuchen Miao
    • 3
  • Ling Ma
    • 1
  • Sixue Chen
    • 6
  • Ying Li
    • 1
  • Shaojun Dai
    • 1
    • 2
  1. 1.Alkali Soil Natural Environmental Science Center, Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of EducationNortheast Forestry UniversityHarbinChina
  2. 2.Development Centre of Plant Germplasm Resources, College of Life and Environmental SciencesShanghai Normal UniversityShanghaiChina
  3. 3.Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, Department of BiologyHenan UniversityKaifengChina
  4. 4.Shanghai Center for Plant Stress BiologyChinese Academy of SciencesShanghaiChina
  5. 5.Institute of BotanyChinese Academy of SciencesBeijingChina
  6. 6.Department of Biology, Genetics Institute, Plant Molecular and Cellular Program, Interdisciplinary Center for Biotechnology ResearchUniversity of FloridaGainesvilleUSA

Personalised recommendations