Advertisement

Planta

, Volume 248, Issue 3, pp 745–750 | Cite as

Magnesium uptake characteristics in Arabidopsis revealed by 28Mg tracer studies

  • Takaaki Ogura
  • Natsuko I. Kobayashi
  • Hisashi Suzuki
  • Ren Iwata
  • Tomoko M. Nakanishi
  • Keitaro Tanoi
Short Communication
  • 242 Downloads

Abstract

Main conclusion

The Mg2+ uptake system in Arabidopsis roots is Gd3+- and Fe2+-sensitive, and responds to a changing Mg2+ concentration within 1 h with the participation of AtMRS2 transporters.

Abstract

Magnesium (Mg2+) absorption and the mechanism regulating its activity have not been clarified yet. To address these issues, it is necessary to reveal the characteristics of Mg2+ uptake in roots. Therefore, we first investigated the Mg2+ uptake characteristics in roots of 1-week-old Arabidopsis plants using 28Mg. The Mg2+ uptake system in roots was up-regulated within 1 h in response to the low Mg2+ condition. This induction was inhibited in Arabidopsis “mitochondrial RNA splicing 2/magnesium transport” mutants atmrs2-4/atmgt6 and atmrs2-7/atmgt7, while the expression of AtMRS2-4/AtMGT6 and AtMRS2-7/AtMGT7 genes in the Arabidopsis wild-type was not responsive to Mg2+ conditions. In addition, the Mg deficiency-induced Mg2+ uptake system was shut-down within 5 min when Mg2+ was resupplied to the environment. An inhibition study showed that the constitutive mechanism functioning in Mg2+ uptake under Mg2+ sufficient conditions was sensitive to a number of divalent and trivalent cations, particularly Gd3+ and Fe2+, but not to K+.

Keywords

Abiotic stress CorA/MRS2 family Inhibitor Mg deficiency Radionuclide Root 

Abbreviations

CoHEX

Hexammine cobalt(III) chloride

MGT

Magnesium transport

MRS2

Mitochondrial RNA splicing 2

Notes

Acknowledgements

Authors thank Dr. Martin O’Brien for English editing. This work was partially supported by JSPS KAKENHI Grant-in-Aid for Young Scientists (B) (number 17K15236), JSPS KAKENHI Grant-in-Aid for Scientific Research (A) (15H02469) and JST PROSTO (number JPMJPR15Q7). This work was also sponsored by JSPS and F.R.S.-FNRS under the Japan - Belgium Research Cooperative Programme.

References

  1. Chen J, Li LG, Liu ZH, Yuan YJ, Guo LL, Mao DD, Tian LF, Chen LB, Luan S, Li DP (2009) Magnesium transporter AtMGT9 is essential for pollen development in Arabidopsis. Cell Res 19:887–898CrossRefPubMedGoogle Scholar
  2. Conn SJ, Conn V, Tyerman SD, Kaiser BN, Leigh R, Gilliham M (2011) Magnesium transporters, MGT2⁄MRS2-1 and MGT3⁄MRS2-5, are important for magnesium partitioning within Arabidopsis thaliana mesophyll vacuoles. New Phytol 190:583–594CrossRefPubMedGoogle Scholar
  3. Demidchik V, Shabala SN, Coutts KB, Tester MA, Davies JM (2003) Free oxygen radicals regulate plasma membrane Ca2+- and K+-permeable channels in plant root cells. J Cell Sci 116:81–88CrossRefPubMedGoogle Scholar
  4. Fujiwara T, Hirai MY, Chino M, Komeda Y, Naito S (1992) Effects of sulfur nutrition on expression of the soybean seed storage protein genes in transgenic petunia. Plant Physiol 99:263–268CrossRefPubMedPubMedCentralGoogle Scholar
  5. Gebert M, Meschenmoser K, Svidova S, Weghuber J, Schweyen R, Eifler K, Lenz H, Weyand K, Knoop V (2009) A root-expressed magnesium transporter of the MRS2⁄MGT gene family in Arabidopsis thaliana allows for growth in low-Mg2+ environments. Plant Cell 21:4018–4030CrossRefPubMedPubMedCentralGoogle Scholar
  6. Guo W, Nazim H, Liang Z, Yang D (2016) Magnesium deficiency in plants: an urgent problem. Crop J 2:83–91CrossRefGoogle Scholar
  7. Hermans C, Conn SJ, Chen J, Xiao Q, Verbruggen N (2013) An update on magnesium homeostasis mechanisms in plants. Metallomics 5:1170–1183CrossRefPubMedGoogle Scholar
  8. Iwata R, Kawamura M, Kimura S (1992) Chromatographic purification of no-carrier-added magnesium-28 for biological studies. J Radioanal Nucl Chem 159:233–237CrossRefGoogle Scholar
  9. Kamiya T, Yamagami M, Hirai MY, Fujiwara T (2012) Establishment of an in planta magnesium monitoring system using CAX3 promoter-luciferase in Arabidopsis. J Exp Bot 63:355–363CrossRefPubMedGoogle Scholar
  10. Knoop V, Groth-Malonek M, Gebert M, Eifler K, Weyand K (2005) Transport of magnesium and other divalent cations: evolution of the 2-TM-GxN proteins in the MIT superfamily. Mol Genet Genom 274:205–216CrossRefGoogle Scholar
  11. Kobayashi NI, Tanoi K (2015) Critical issues in the study of magnesium transport systems and magnesium deficiency symptoms in plants. Int J Mol Sci 16:23076–23093CrossRefPubMedPubMedCentralGoogle Scholar
  12. Kobayashi NI, Iwata N, Saito T, Suzuki H, Iwata R, Tanoi K, Nakanishi TM (2013) Application of 28Mg for characterization of Mg uptake in rice seedling under different pH conditions. J Radioanal Nucl Chem 296:531–534CrossRefGoogle Scholar
  13. Kobayashi NI, Yamaji N, Yamamoto H, Okubo K, Ueno H, Costa A, Tanoi K, Matsumura H, Fujii-Kashino M, Horiguchi T, Nayef M, Shabala S, An G, Ma JF, Horie T (2017) OsHKT1;5 mediates Na+ exclusion in the vasculature to protect leaf blades and reproductive tissues from salt toxicity in rice. Plant J 91:657–670CrossRefPubMedGoogle Scholar
  14. Kucharski LM, Lubbe WJ, Maguire ME (2000) Cation hexaammines are selective and potent inhibitors of the CorA magnesium transport system. J Biol Chem 275:16767–16773CrossRefPubMedGoogle Scholar
  15. Lenz H, Dombinov V, Dreisten J, Reinhard MR, Gebert M, Knoop V (2013) Magnesium deficiency phenotypes upon multiple knockout of Arabidopsis thaliana MRS2 clade B genes can be ameliorated by concomitantly reduced calcium supply. Plant Cell Physiol 54:1118–1131CrossRefPubMedGoogle Scholar
  16. Li L, Tutone AF, Drummond RS, Gardner RC, Luan S (2001) A novel family of magnesium transport genes in Arabidopsis. Plant Cell 13:2761–2775CrossRefPubMedPubMedCentralGoogle Scholar
  17. Li LG, Sokolov LN, Yang YH, Li DP, Ting J, Pandy GK, Luan S (2008) A mitochondrial magnesium transporter functions in Arabidopsis pollen development. Mol Plant 1:675–685CrossRefPubMedGoogle Scholar
  18. Liang S, Qi Y, Zhao J, Li Y, Wang R, Shao J, Liu X, An L, Yu F (2017) Mutations in the Arabidopsis AtMRS2-11/AtMGT10/VAR5 gene cause leaf reticulation. Front Plant Sci.  https://doi.org/10.3389/fpls.2017.02007 CrossRefPubMedPubMedCentralGoogle Scholar
  19. Mao D, Chen J, Tian L, Liu Z, Yang L, Tang R, Li J, Lu C, Yang Y, Shi J, Chen L, Li D, Luan S (2014) Arabidopsis transporter MGT6 mediates magnesium uptake and is required for growth under magnesium limitation. Plant Cell 26:2234–2248CrossRefPubMedPubMedCentralGoogle Scholar
  20. Oda K, Kamiya T, Shikanai Y, Shigenobu S, Yamaguchi K, Fujiwara T (2016) The Arabidopsis Mg transporter, MRS2-4, is essential for Mg homeostasis under both low and high Mg conditions. Plant Cell Physiol 57:754–763CrossRefPubMedGoogle Scholar
  21. Pisat NP, Pandey A, MacDiarmid CW (2009) MNR2 regulates intracellular magnesium storage in Saccharomyces cerevisiae. Genetics 183:873–884CrossRefPubMedPubMedCentralGoogle Scholar
  22. Rodrigo-Moreno A, Andrés-Colás N, Poschenrieder C, Gunsé B, Peñarrubia L, Shabala S (2013) Calcium- and potassium-permeable plasma membrane transporters are activated by copper in Arabidopsis root tips: linking copper transport with cytosolic hydroxyl radical production. Plant, Cell Environ 36:844–855CrossRefGoogle Scholar
  23. Schock I, Gregan J, Steinhauser S, Schweyen R, Brennicke A, Knoop V (2000) A member of a novel Arabidopsis thaliana gene family of candidate Mg2+ ion transporters complements a yeast mitochondrial group II intron-splicing mutant. Plant J 24:489–501CrossRefPubMedGoogle Scholar
  24. Sun Y, Yang R, Li L, Huang J (2017) The magnesium transporter MGT10 is essential for chloroplast development and photosynthesis in Arabidopsis thaliana. Mol Plant 10:1584–1587CrossRefPubMedGoogle Scholar
  25. Tanoi K, Kobayashi NI (2015) Leaf senescence by magnesium deficiency. Plants 4:756–772CrossRefPubMedPubMedCentralGoogle Scholar
  26. Tanoi K, Kobayashi NI, Saito T, Iwata N, Kamada R, Iwata R, Suzuki H, Hirose A, Ohmae Y, Sugita R, Nakanishi TM (2014) Effects of magnesium deficiency on magnesium uptake activity of rice root, evaluated using 28Mg as a tracer. Plant Soil 384:69–77CrossRefGoogle Scholar
  27. Yan YW, Mao DD, Yang L, Qi JL, Zhang XX, Tang QL, Li YP, Tang RJ, Luan S (2018) Magnesium transporter MGT6 plays an essential role in maintaining magnesium homeostasis and regulating high magnesium tolerance in Arabidopsis. Front Plant Sci 9:274.  https://doi.org/10.3389/fpls.2018.00274 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Graduate School of Agricultural and Life SciencesThe University of TokyoTokyoJapan
  2. 2.National Institute of Radiological SciencesNational Institutes for Quantum and Radiological Science and TechnologyChibaJapan
  3. 3.Cyclotron and Radioisotope Center, Tohoku UniversitySendaiJapan
  4. 4.PRESTO, Japan Science and Technology Agency (JST)KawaguchiJapan

Personalised recommendations