Advertisement

Planta

, Volume 248, Issue 3, pp 629–646 | Cite as

PAP genes are tissue- and cell-specific markers of chloroplast development

  • Monique Liebers
  • Fabien Chevalier
  • Robert Blanvillain
  • Thomas Pfannschmidt
Original Article
  • 282 Downloads

Abstract

Main conclusion

Expression of PAP genes is strongly coordinated and represents a highly selective cell-specific marker associated with the development of chloroplasts in photosynthetically active organs of Arabidopsis seedlings and adult plants.

Transcription in plastids of plants depends on the activity of phage-type single-subunit nuclear-encoded RNA polymerases (NEP) and a prokaryotic multi-subunit plastid-encoded RNA polymerase (PEP). PEP is comprised of the core subunits α, β, β′ and β″ encoded by rpoA, rpoB/C1/C2 genes located on the plastome. This core enzyme needs to interact with nuclear-encoded sigma factors for proper promoter recognition. In chloroplasts, the core enzyme is surrounded by additional 12 nuclear-encoded subunits, all of eukaryotic origin. These PEP-associated proteins (PAPs) were found to be essential for chloroplast biogenesis as Arabidopsis inactivation mutants for each of them revealed albino or pale-green phenotypes. In silico analysis of transcriptomic data suggests that PAP genes represent a tightly controlled regulon, whereas wetlab data are sparse and correspond to the expression of individual genes mostly studied at the seedling stage. Using RT-PCR, transient, and stable expression assays of PAP promoter-GUS-constructs, we do provide, in this study, a comprehensive expression catalogue for PAP genes throughout the life cycle of Arabidopsis. We demonstrate a selective impact of light on PAP gene expression and uncover a high tissue specificity that is coupled to developmental progression especially during the transition from skotomorphogenesis to photomorphogenesis. Our data imply that PAP gene expression precedes the formation of chloroplasts rendering PAP genes a tissue- and cell-specific marker of chloroplast biogenesis.

Keywords

Organelle biogenesis Gene expression Photomorphogenesis Plastid-encoded RNA polymerase (PEP) PEP-associated proteins (PAPs) 

Abbreviations

HY5

Elongated hypocotyl 5

NEP

Nuclear-encoded RNA polymerases

PEP

Plastid-encoded RNA polymerase

PAPs

PEP-associated proteins

Notes

Acknowledgements

This work was supported by a grant from the Deutsche Forschungsgemeinschaft to T.P. (PF323-5) and a grant from the AGIR programme of Université Grenoble-Alpes (UGA) to R.B. The project received further support by institutional grants to Laboratoire de Physiologie Cellulaire et Végétale by Labex Grenoble Alliance of Integrated Structural Biology (GRAL), UGA, Institut National de la Recherche Agronomique (INRA), and the Centre National de la Recherche Scientifique (CNRS). The authors thank Julia Engelhorn and Christel Carles for the help with in situ preparations and critical inputs.

Supplementary material

425_2018_2924_MOESM1_ESM.pptx (5.7 mb)
Supplementary material 1 (PPTX 5821 kb)

References

  1. Allorent G, Courtois F, Chevalier F, Lerbs-Mache S (2013) Plastid gene expression during chloroplast differentiation and dedifferentiation into non-photosynthetic plastids during seed formation. Plant Mol Biol 82(1–2):59–70.  https://doi.org/10.1007/s11103-013-0037-0 CrossRefPubMedGoogle Scholar
  2. Allorent G, Osorio S, Vu JL, Falconet D, Jouhet J, Kuntz M, Fernie AR, Lerbs-Mache S, Macherel D, Courtois F, Finazzi G (2015) Adjustments of embryonic photosynthetic activity modulate seed fitness in Arabidopsis thaliana. New Phytol 205(2):707–719.  https://doi.org/10.1111/nph.13044 CrossRefPubMedGoogle Scholar
  3. Ambrose BA, Lerner DR, Ciceri P, Padilla CM, Yanofsky MF, Schmidt RJ (2000) Molecular and genetic analyses of the silky1 gene reveal conservation in floral organ specification between eudicots and monocots. Mol Cell 5(3):569–579CrossRefPubMedGoogle Scholar
  4. Ang LH, Chattopadhyay S, Wei N, Oyama T, Okada K, Batschauer A, Deng XW (1998) Molecular interaction between COP1 and HY5 defines a regulatory switch for light control of Arabidopsis development. Mol Cell 1:213–222CrossRefPubMedGoogle Scholar
  5. Arsova B, Hoja U, Wimmelbacher M, Greiner E, Üstün S, Melzer M, Petersen K, Lein W, Börnke F (2010) Plastidial thioredoxin z interacts with two fructokinase-like proteins in a thiol-dependent manner: evidence for an essential role in chloroplast development in Arabidopsis and Nicotiana benthamiana. Plant Cell 22(5):1498–1515.  https://doi.org/10.1105/tpc.109.071001 CrossRefPubMedPubMedCentralGoogle Scholar
  6. Barton KA, Schattat MH, Jakob T, Hause G, Wilhelm C, McKenna JF, Mathe C, Runions J, Van Damme D, Mathur J (2016) Epidermal pavement cells of Arabidopsis have chloroplasts. Plant Physiol 171(2):723–726.  https://doi.org/10.1104/pp.16.00608 PubMedCrossRefGoogle Scholar
  7. Bastien O, Botella C, Chevalier F, Block MA, Jouhet J, Breton C, Girard-Egrot A, Marechal E (2016) New insights on thylakoid biogenesis in plant cells. Int Rev Cell Mol Biol 323:1–30.  https://doi.org/10.1016/bs.ircmb.2015.12.001 CrossRefPubMedGoogle Scholar
  8. Baumgartner BJ, Rapp JC, Mullet JE (1989) Plastid transcription activity and DNA copy number increase early in barley chloroplast development. Plant Physiol 89(3):1011–1018CrossRefPubMedPubMedCentralGoogle Scholar
  9. Belmonte MF, Kirkbride RC, Stone SL, Pelletier JM, Bui AQ, Yeung EC, Hashimoto M, Fei J, Harada CM, Munoz MD, Le BH, Drews GN, Brady SM, Goldberg RB, Harada JJ (2013) Comprehensive developmental profiles of gene activity in regions and subregions of the Arabidopsis seed. Proc Natl Acad Sci USA 110(5):E435–E444.  https://doi.org/10.1073/pnas.1222061110 CrossRefPubMedGoogle Scholar
  10. Bendich AJ (2013) DNA abandonment and the mechanisms of uniparental inheritance of mitochondria and chloroplasts. Chromosome Res 21(3):287–296.  https://doi.org/10.1007/s10577-013-9349-9 CrossRefPubMedGoogle Scholar
  11. Blanvillain R (2000) Etude d’un marqueur génétique du suspenseur chez Arabidopsis thaliana et application d’un système d’activation de gène à la recherche de sa fonction. University of Perpignan, Ph.D. thesis, PerpignanGoogle Scholar
  12. Blanvillain R, Boavida LC, McCormick S, Ow DW (2008) Exportin1 genes are essential for development and function of the gametophytes in Arabidopsis thaliana. Genetics 180(3):1493–1500.  https://doi.org/10.1534/genetics.108.094896 CrossRefPubMedPubMedCentralGoogle Scholar
  13. Blanvillain R, Young B, Cai YM, Hecht V, Varoquaux F, Delorme V, Lancelin JM, Delseny M, Gallois P (2011) The Arabidopsis peptide kiss of death is an inducer of programmed cell death. EMBO J 30(6):1173–1183.  https://doi.org/10.1038/emboj.2011.14 CrossRefPubMedPubMedCentralGoogle Scholar
  14. Börner T, Aleynikova AY, Zubo YO, Kusnetsov VV (2015) Chloroplast RNA polymerases: role in chloroplast biogenesis. Biochim Biophys Acta 1847(9):761–769.  https://doi.org/10.1016/j.bbabio.2015.02.004 CrossRefPubMedGoogle Scholar
  15. Charuvi D, Kiss V, Nevo R, Shimoni E, Adam Z, Reich Z (2012) Gain and loss of photosynthetic membranes during plastid differentiation in the shoot apex of Arabidopsis. Plant Cell 24(3):1143–1157.  https://doi.org/10.1105/tpc.111.094458 CrossRefPubMedPubMedCentralGoogle Scholar
  16. Chen M, Galvão RM, Li M, Burger B, Bugea J, Bolado J, Chory J (2010) Arabidopsis HEMERA/pTAC12 initiates photomorphogenesis by phytochromes. Cell 141(7):1230–1240.  https://doi.org/10.1016/j.cell.2010.05.007 CrossRefPubMedPubMedCentralGoogle Scholar
  17. Chiang YH, Zubo YO, Tapken W, Kim HJ, Lavanway AM, Howard L, Pilon M, Kieber JJ, Schaller GE (2012) Functional characterization of the GATA transcription factors GNC and CGA1 reveals their key role in chloroplast development, growth, and division in Arabidopsis. Plant Physiol 160(1):332–348.  https://doi.org/10.1104/pp.112.198705 CrossRefPubMedPubMedCentralGoogle Scholar
  18. Chory J, Peto CA (1990) Mutations in the DET1 gene affect cell-type-specific expression of light-regulated genes and chloroplast development in Arabidopsis. Proc Natl Acad Sci USA 87(22):8776–8780CrossRefPubMedGoogle Scholar
  19. Chotewutmontri P, Barkan A (2016) Dynamics of chloroplast translation during chloroplast differentiation in maize. PLoS Genet 12(7):e1006106.  https://doi.org/10.1371/journal.pgen.1006106 CrossRefPubMedPubMedCentralGoogle Scholar
  20. Clément C, Pacini E (2001) Anther plastids in angiosperms. Bot Rev 67:54CrossRefGoogle Scholar
  21. Deng XW, Matsui M, Wei N, Wagner D, Chu AM, Feldmann KA, Quail PH (1992) COP1, an Arabidopsis regulatory gene, encodes a protein with both a zinc-binding motif and a G beta homologous domain. Cell 71(5):791–801CrossRefPubMedGoogle Scholar
  22. Eckardt NA (2007) Light regulation of plant development: HY5 genomic binding sites. Plant Cell 19:727–729CrossRefPubMedCentralGoogle Scholar
  23. Gao ZP, Yu QB, Zhao TT, Ma Q, Chen GX, Yang ZN (2011) A functional component of the transcriptionally active chromosome complex, Arabidopsis pTAC14, interacts with pTAC12/HEMERA and regulates plastid gene expression. Plant Physiol 157(4):1733–1745.  https://doi.org/10.1104/pp.111.184762 CrossRefPubMedPubMedCentralGoogle Scholar
  24. Gifford RM, Bremner PM (1981) Accumulation and conversion of sugars by developing wheat grains. II. Light requirement for kernels cultured in vitro. Funct Plant Biol 8:631–640Google Scholar
  25. Gilkerson J, Perez-Ruiz JM, Chory J, Callis J (2012) The plastid-localized pfkB-type carbohydrate kinases FRUCTOKINASE-LIKE 1 and 2 are essential for growth and development of Arabidopsis thaliana. BMC Plant Biol 12:102.  https://doi.org/10.1186/1471-2229-12-102 CrossRefPubMedPubMedCentralGoogle Scholar
  26. Grübler B, Merendino L, Twardziok SO, Mininno M, Allorent G, Chevalier F, Liebers M, Blanvillain R, Mayer K, Lerbs-Mache S, Ravanel S, Pfannschmidt T (2017) Light and plastid signals regulate different sets of genes in the albino mutant pap7-1. Plant Physiol 175(3):1203–1219.  https://doi.org/10.1104/pp.17.00982 CrossRefPubMedPubMedCentralGoogle Scholar
  27. Hajdukiewicz PT, Allison LA, Maliga P (1997) The two RNA polymerases encoded by the nuclear and the plastid compartments transcribe distinct groups of genes in tobacco plastids. EMBO J 16(13):4041–4048.  https://doi.org/10.1093/emboj/16.13.4041 CrossRefPubMedPubMedCentralGoogle Scholar
  28. Hermkes R, Fu YF, Nürrenberg K, Budhiraja R, Schmelzer E, Elrouby N, Dohmen RJ, Bachmair A, Coupland G (2011) Distinct roles for Arabidopsis SUMO protease ESD4 and its closest homolog ELS1. Planta 233(1):63–73.  https://doi.org/10.1007/s00425-010-1281-z CrossRefPubMedGoogle Scholar
  29. Hu J, Bogorad L (1990) Maize chloroplast RNA polymerase: the 180-, 120-, and 38-kilodalton polypeptides are encoded in chloroplast genes. Proc Natl Acad Sci USA 87(4):1531–1535CrossRefPubMedGoogle Scholar
  30. Igloi GL, Meinke A, Döry I, Kössel H (1990) Nucleotide sequence of the maize chloroplast rpo B/C1/C2 operon: comparison between the derived protein primary structures from various organisms with respect to functional domains. Mol Gen Genet 221(3):379–394CrossRefPubMedGoogle Scholar
  31. Jin X, Zhu J, Zeiger E (2001) The hypocotyl chloroplast plays a role in phototropic bending of Arabidopsis seedlings: developmental and genetic evidence. J Exp Bot 52(354):91–97CrossRefPubMedGoogle Scholar
  32. Kindgren P, Strand A (2015) Chloroplast transcription, untangling the Gordian Knot. New Phytol 206:889–891CrossRefPubMedGoogle Scholar
  33. Kobayashi K, Baba S, Obayashi T, Sato M, Toyooka K, Keränen M, Aro EM, Fukaki H, Ohta H, Sugimoto K, Masuda T (2012) Regulation of root greening by light and auxin/cytokinin signaling in Arabidopsis. Plant Cell 24(3):1081–1095.  https://doi.org/10.1105/tpc.111.092254 CrossRefPubMedPubMedCentralGoogle Scholar
  34. Kremnev D, Strand A (2014) Plastid encoded RNA polymerase activity and expression of photosynthesis genes required for embryo and seed development in Arabidopsis. Front Plant Sci 5:385.  https://doi.org/10.3389/fpls.2014.00385 CrossRefPubMedPubMedCentralGoogle Scholar
  35. Le BH, Cheng C, Bui AQ, Wagmaister JA, Henry KF, Pelletier J, Kwong L, Belmonte M, Kirkbride R, Horvath S, Drews GN, Fischer RL, Okamuro JK, Harada JJ, Goldberg RB (2010) Global analysis of gene activity during Arabidopsis seed development and identification of seed-specific transcription factors. Proc Natl Acad Sci USA 107(18):8063–8070.  https://doi.org/10.1073/pnas.1003530107 CrossRefPubMedGoogle Scholar
  36. Lee J, He K, Stolc V, Lee H, Figueroa P, Gao Y, Tongprasit W, Zhao H, Lee I, Deng XW (2007) Analysis of transcription factor HY5 genomic binding sites revealed its hierarchical role in light regulation of development. Plant Cell 19:731–749CrossRefPubMedPubMedCentralGoogle Scholar
  37. Lerbs-Mache S (2011) Function of plastid sigma factors in higher plants: regulation of plastid gene expression or just preservation of constitutive transcription? Plant Mol Biol 76:235–249CrossRefPubMedGoogle Scholar
  38. Li J, Li G, Wang H, Deng XW (2011) Phytochrome signaling mechanisms. Arabidopsis Book 9:e0148.  https://doi.org/10.1199/tab.0148 CrossRefPubMedPubMedCentralGoogle Scholar
  39. Liebers M, Grübler B, Chevalier F, Lerbs-Mache S, Merendino L, Blanvillain R, Pfannschmidt T (2017) Regulatory shifts in plastid transcription play a key role in morphological conversions of plastids during plant development. Front Plant Sci 8:23.  https://doi.org/10.3389/fpls.2017.00023 CrossRefPubMedPubMedCentralGoogle Scholar
  40. Liere K, Weihe A, Börner T (2011) The transcription machineries of plant mitochondria and chloroplasts: composition, function, and regulation. J Plant Physiol 168(12):1345–1360.  https://doi.org/10.1016/j.jplph.2011.01.005 CrossRefPubMedGoogle Scholar
  41. Liu H, Wang X, Ren K, Li K, Wei M, Wang W, Sheng X (2017) Light deprivation-induced inhibition of chloroplast biogenesis does not arrest embryo morphogenesis but strongly reduces the accumulation of storage reserves during embryo maturation in Arabidopsis. Front Plant Sci 8:1287CrossRefPubMedPubMedCentralGoogle Scholar
  42. Lopez-Juez E, Pyke KA (2005) Plastids unleashed: their development and their integration in plant development. Int J Dev Biol 49(5–6):557–577.  https://doi.org/10.1387/ijdb.051997el CrossRefPubMedGoogle Scholar
  43. Majeran W, Friso G, Asakura Y, Qu X, Huang M, Ponnala L, Watkins KP, Barkan A, van Wijk KJ (2012) Nucleoid-enriched proteomes in developing plastids and chloroplasts from maize leaves: a new conceptual framework for nucleoid functions. Plant Physiol 158(1):156–189.  https://doi.org/10.1104/pp.111.188474 CrossRefPubMedGoogle Scholar
  44. Melonek J, Matros A, Trösch M, Mock HP, Krupinska K (2012) The core of chloroplast nucleoids contains architectural SWIB domain proteins. Plant Cell 24(7):3060–3073.  https://doi.org/10.1105/tpc.112.099721 CrossRefPubMedPubMedCentralGoogle Scholar
  45. Mullet JE, Klein RR (1987) Transcription and RNA stability are important determinants of higher plant chloroplast RNA levels. EMBO J 6(6):1571–1579PubMedPubMedCentralCrossRefGoogle Scholar
  46. Myouga F, Hosoda C, Umezawa T, Iizumi H, Kuromori T, Motohashi R, Shono Y, Nagata N, Ikeuchi M, Shinozaki K (2008) A heterocomplex of iron superoxide dismutases defends chloroplast nucleoids against oxidative stress and is essential for chloroplast development in Arabidopsis. Plant Cell 20(11):3148–3162.  https://doi.org/10.1105/tpc.108.061341 CrossRefPubMedPubMedCentralGoogle Scholar
  47. Osterlund MT, Hardtke CS, Wei N, Deng XW (2000) Targeted destabilization of HY5 during light-regulated development of Arabidopsis. Nature 405:462–466CrossRefPubMedGoogle Scholar
  48. Oyama T, Shimura Y, Okada K (1997) The Arabidopsis HY5 gene encodes a bZIP protein that regulates stimulus-induced development of root and hypocotyl. Genes Dev 11:2983–2995CrossRefPubMedPubMedCentralGoogle Scholar
  49. Pfalz J, Pfannschmidt T (2013) Essential nucleoid proteins in early chloroplast development. Trends Plant Sci 18(4):186–194.  https://doi.org/10.1016/j.tplants.2012.11.003 CrossRefPubMedGoogle Scholar
  50. Pfalz J, Liere K, Kandlbinder A, Dietz KJ, Oelmuller R (2006) pTAC2, -6, and -12 are components of the transcriptionally active plastid chromosome that are required for plastid gene expression. Plant Cell 18(1):176–197.  https://doi.org/10.1105/tpc.105.036392 CrossRefPubMedPubMedCentralGoogle Scholar
  51. Pfalz J, Holtzegel U, Barkan A, Weisheit W, Mittag M, Pfannschmidt T (2015) ZmpTAC12 binds single-stranded nucleic acids and is essential for accumulation of the plastid-encoded polymerase complex in maize. New Phytol 206(3):1024–1037.  https://doi.org/10.1111/nph.13248 CrossRefPubMedGoogle Scholar
  52. Pfannschmidt T, Link G (1994) Separation of two classes of plastid DNA-dependent RNA polymerases that are differentially expressed in mustard (Sinapis alba L.) seedlings. Plant Mol Biol 25(1):69–81CrossRefPubMedGoogle Scholar
  53. Pfannschmidt T, Ogrzewalla K, Baginsky S, Sickmann A, Meyer HE, Link G (2000) The multisubunit chloroplast RNA polymerase A from mustard (Sinapis alba L.). Integration of a prokaryotic core into a larger complex with organelle-specific functions. Eur J Biochem 267(1):253–261CrossRefPubMedGoogle Scholar
  54. Pfannschmidt T, Blanvillain R, Merendino L, Courtois F, Chevalier F, Liebers M, Grübler B, Hommel E, Lerbs-Mache S (2015) Plastid RNA polymerases: orchestration of enzymes with different evolutionary origins controls chloroplast biogenesis during the plant life cycle. J Exp Bot 66:6957–6973.  https://doi.org/10.1093/jxb/erv415 CrossRefPubMedGoogle Scholar
  55. Pogson BJ, Ganguly D, Albrecht-Borth V (2015) Insights into chloroplast biogenesis and development. Biochim Biophys Acta 1847(9):1017–1024.  https://doi.org/10.1016/j.bbabio.2015.02.003 CrossRefPubMedGoogle Scholar
  56. Pribil M, Labs M, Leister D (2014) Structure and dynamics of thylakoids in land plants. J Exp Bot 65(8):1955–1972.  https://doi.org/10.1093/jxb/eru090 CrossRefPubMedGoogle Scholar
  57. Pyke KA, Leech RM (1994) A genetic analysis of chloroplast division and expansion in Arabidopsis thaliana. Plant Physiol 104(1):201–207CrossRefPubMedPubMedCentralGoogle Scholar
  58. Pyke KA, Page AM (1998) Plastid ontogeny during petal development in Arabidopsis. Plant Physiol 116(2):797–803CrossRefPubMedPubMedCentralGoogle Scholar
  59. Quail PH (2002) Phytochrome photosensory signalling networks. Nat Rev Mol Cell Biol 3:85–93CrossRefPubMedGoogle Scholar
  60. Radchuk V, Borisjuk L (2014) Physical, metabolic and developmental functions of the seed coat. Front Plant Sci 5:510.  https://doi.org/10.3389/fpls.2014.00510 CrossRefPubMedPubMedCentralGoogle Scholar
  61. Rodermel SR, Bogorad L (1985) Maize plastid photogenes: mapping and photoregulation of transcript levels during light-induced development. J Cell Biol 100:463–476CrossRefPubMedGoogle Scholar
  62. Saijo Y, Sullivan JA, Wang H, Yang J, Shen Y, Rubio V, Ma L, Hoecker U, Deng XW (2003) The COP1-SPA1 interaction defines a critical step in phytochrome A-mediated regulation of HY5 activity. Genes Dev 17:2642–2647CrossRefPubMedPubMedCentralGoogle Scholar
  63. Schröter Y, Steiner S, Matthäi K, Pfannschmidt T (2010) Analysis of oligomeric protein complexes in the chloroplast sub-proteome of nucleic acid-binding proteins from mustard reveals potential redox regulators of plastid gene expression. Proteomics 10(11):2191–2204.  https://doi.org/10.1002/pmic.200900678 CrossRefPubMedGoogle Scholar
  64. Schröter Y, Steiner S, Weisheit W, Mittag M, Pfannschmidt T (2014) A purification strategy for analysis of the DNA/RNA-associated sub-proteome from chloroplasts of mustard cotyledons. Front Plant Sci 5:557.  https://doi.org/10.3389/fpls.2014.00557 PubMedPubMedCentralCrossRefGoogle Scholar
  65. Solymosi K, Schoefs B (2010) Etioplast and etio-chloroplast formation under natural conditions: the dark side of chlorophyll biosynthesis in angiosperms. Photosynth Res 105(2):143–166.  https://doi.org/10.1007/s11120-010-9568-2 CrossRefPubMedGoogle Scholar
  66. Somers DE, Quail PH (1995) Temporal and spatial expression patterns of PHYA and PHYB genes in Arabidopsis. Plant J 7(3):413–427CrossRefPubMedGoogle Scholar
  67. Steiner S, Schröter Y, Pfalz J, Pfannschmidt T (2011) Identification of essential subunits in the plastid-encoded RNA polymerase complex reveals building blocks for proper plastid development. Plant Physiol 157(3):1043–1055.  https://doi.org/10.1104/pp.111.184515 CrossRefPubMedPubMedCentralGoogle Scholar
  68. Sugiura M (1992) The chloroplast genome. Plant Mol Biol 19(1):149–168CrossRefPubMedGoogle Scholar
  69. Suzuki JY, Ytterberg AJ, Beardslee TA, Allison LA, Wijk KJ, Maliga P (2004) Affinity purification of the tobacco plastid RNA polymerase and in vitro reconstitution of the holoenzyme. Plant J 40(1):164–172.  https://doi.org/10.1111/j.1365-313X.2004.02195.x CrossRefPubMedGoogle Scholar
  70. Tejos RI, Mercado AV, Meisel LA (2010) Analysis of chlorophyll fluorescence reveals stage specific patterns of chloroplast-containing cells during Arabidopsis embryogenesis. Biol Res 43:99–111CrossRefPubMedGoogle Scholar
  71. Timmis JN, Ayliffe MA, Huang CY, Martin W (2004) Endosymbiotic gene transfer: organelle genomes forge eukaryotic chromosomes. Nat Rev Genet 5(2):123–135.  https://doi.org/10.1038/nrg1271 CrossRefPubMedGoogle Scholar
  72. Tschiersch H, Liebsch G, Borisjuk L, Stangelmayer A, Rolletschek H (2012) An imaging method for oxygen distribution, respiration and photosynthesis at a microscopic level of resolution. New Phytol 196(3):926–936.  https://doi.org/10.1111/j.1469-8137.2012.04295.x CrossRefPubMedGoogle Scholar
  73. Usami T, Mochizuki N, Kondo M, Nishimura M, Nagatani A (2004) Cryptochromes and phytochromes synergistically regulate Arabidopsis root greening under blue light. Plant Cell Physiol 45:1798–1808CrossRefPubMedGoogle Scholar
  74. Virdi KS, Wamboldt Y, Kundariya H, Laurie JD, Keren I, Kumar KR, Block A, Basset G, Luebker S, Elowsky C, Day PM, Roose JL, Bricker TM, Elthon T, Mackenzie SA (2016) MSH1 is a plant organellar DNA binding and thylakoid protein under precise spatial regulation to alter development. Mol Plant 9(2):245–260.  https://doi.org/10.1016/j.molp.2015.10.011 CrossRefPubMedGoogle Scholar
  75. Wagner R, Dietzel L, Bräutigam K, Fischer W, Pfannschmidt T (2008) The long-term response to fluctuating light quality is an important and distinct light acclimation mechanism that supports survival of Arabidopsis thaliana under low light conditions. Planta 228(4):573–587.  https://doi.org/10.1007/s00425-008-0760-y CrossRefPubMedGoogle Scholar
  76. Wimmelbacher M, Börnke F (2014) Redox activity of thioredoxin z and fructokinase-like protein 1 is dispensable for autotrophic growth of Arabidopsis thaliana. J Exp Bot 65(9):2405–2413.  https://doi.org/10.1093/jxb/eru122 CrossRefPubMedPubMedCentralGoogle Scholar
  77. Yagi Y, Ishizaki Y, Nakahira Y, Tozawa Y, Shiina T (2012) Eukaryotic-type plastid nucleoid protein pTAC3 is essential for transcription by the bacterial-type plastid RNA polymerase. Proc Natl Acad Sci USA 109(19):7541–7546.  https://doi.org/10.1073/pnas.1119403109 CrossRefPubMedGoogle Scholar
  78. Yu QB, Lu Y, Ma Q, Zhao TT, Huang C, Zhao HF, Zhang XL, Lv RH, Yang ZN (2013) TAC7, an essential component of the plastid transcriptionally active chromosome complex, interacts with FLN1, TAC10, TAC12 and TAC14 to regulate chloroplast gene expression in Arabidopsis thaliana. Physiol Plant 148(3):408–421.  https://doi.org/10.1111/j.1399-3054.2012.01718.x CrossRefPubMedGoogle Scholar
  79. Zoschke R, Liere K, Börner T (2007) From seedling to mature plant: arabidopsis plastidial genome copy number, RNA accumulation and transcription are differentially regulated during leaf development. Plant J 50(4):710–722.  https://doi.org/10.1111/j.1365-313X.2007.03084.x CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.LPCV, CEA, CNRS, INRA, Université Grenoble-Alpes, BIGGrenobleFrance

Personalised recommendations