Advertisement

Planta

, Volume 248, Issue 3, pp 613–628 | Cite as

The histone acetyltransferase GCN5 and the transcriptional coactivator ADA2b affect leaf development and trichome morphogenesis in Arabidopsis

  • Jenna Kotak
  • Marina Saisana
  • Vasilis Gegas
  • Nikoletta Pechlivani
  • Athanasios Kaldis
  • Panagiotis Papoutsoglou
  • Athanasios Makris
  • Julia Burns
  • Ashley L. Kendig
  • Minnah Sheikh
  • Cyrus E. Kuschner
  • Gabrielle Whitney
  • Hanna Caiola
  • John H. Doonan
  • Konstantinos E. Vlachonasios
  • Elizabeth R. McCain
  • Amy T. Hark
Original Article

Abstract

Main conclusion

The histone acetyltransferase GCN5 and associated transcriptional coactivator ADA2b are required to couple endoreduplication and trichome branching. Mutation of ADA2b also disrupts the relationship between ploidy and leaf cell size.

Dynamic chromatin structure has been established as a general mechanism by which gene function is temporally and spatially regulated, but specific chromatin modifier function is less well understood. To address this question, we have investigated the role of the histone acetyltransferase GCN5 and the associated coactivator ADA2b in developmental events in Arabidopsis thaliana. Arabidopsis plants with T-DNA insertions in GCN5 (also known as HAG1) or ADA2b (also known as PROPORZ1) display pleiotropic phenotypes including dwarfism and floral defects affecting fertility. We undertook a detailed characterization of gcn5 and ada2b phenotypic effects in rosette leaves and trichomes to establish a role for epigenetic control in these developmental processes. ADA2b and GCN5 play specific roles in leaf tissue, affecting cell growth and division in rosette leaves often in complex and even opposite directions. Leaves of gcn5 plants display overall reduced ploidy levels, while ada2b-1 leaves show increased ploidy. Endoreduplication leading to increased ploidy is also known to contribute to normal trichome morphogenesis. We demonstrate that gcn5 and ada2b mutants display alterations in the number and patterning of trichome branches, with ada2b-1 and gcn5-1 trichomes being significantly less branched, while gcn5-6 trichomes show increased branching. Elongation of the trichome stalk and branches also vary in different mutant backgrounds, with stalk length having an inverse relationship with branch number. Taken together, our data indicate that, in Arabidopsis, leaves and trichomes ADA2b and GCN5 are required to couple nuclear content with cell growth and morphogenesis.

Keywords

Endoreduplication Epigenetics Chromatin Histone acetyltransferase 

Notes

Acknowledgements

We thank Muhlenberg College students Max Blumenthal and Timothy DeRosa for contributions to the gene expression studies and acknowledge Hannah Molk for her preliminary work investigating the GCN5 transcript in gcn5-6 plants. We also thank AUTh undergraduate students Dimitra Papadopoulou, Zoe Spyropoulou, Anthi Symeonidou, and Dimitra Tsompani for contributions to genetic analysis of double mutants. Permission to adapt Fig. 5 from Folkers et al. (1997) was kindly granted by The Company of Biologists Ltd.

Funding

This work was supported in part by Muhlenberg College. A Gene and Development British Society summer studentship was granted to PN and Erasmus + placement to PP and SM.

Supplementary material

425_2018_2923_MOESM1_ESM.pdf (579 kb)
Supplementary material 1 (PDF 579 kb)

References

  1. Alonso JM, Stepanova AN, Leisse TJ, Kim CJ, Chen H, Shinn P et al (2003) Genome-wide insertional mutagenesis of Arabidopsis thaliana. Science 301:653–657.  https://doi.org/10.1126/science.1086391 CrossRefPubMedGoogle Scholar
  2. Anzola JM, Sieberer T, Ortbauer M, Butt H, Korbei B, Weinhofer I et al (2010) Putative Arabidopsis Transcriptional Adaptor Protein (PROPORZ1) is required to modulate histone acetylation in response to auxin. Proc Natl Acad Sci 107:10308–10313.  https://doi.org/10.1073/pnas.0913918107 CrossRefPubMedGoogle Scholar
  3. Barow M, Meister A (2002) Lack of correlation between AT frequency and genome size in higher plants and the effect of nonrandomness of base sequences on dye binding. Cytometry 47:1–7CrossRefGoogle Scholar
  4. Benhamed M, Bertrand C, Servet C, Zhou D-X (2006) Arabidopsis GCN5, HD1, and TAF1/HAF2 interact to regulate histone acetylation required for light-responsive gene expression. Plant Cell 18:2893–2903.  https://doi.org/10.1105/tpc.106.043489 CrossRefPubMedPubMedCentralGoogle Scholar
  5. Benhamed M, Martin-Magniette M-L, Taconnat L, Bitton F, Servet C, De Clercq R et al (2008) Genome-scale Arabidopsis promoter array identifies targets of the histone acetyltransferase GCN5. Plant J 56:493–504.  https://doi.org/10.1111/j.1365-313X.2008.03606.x CrossRefPubMedGoogle Scholar
  6. Bertrand C, Bergounioux C, Domenichini S, Delarue M, Zhou D-X (2003) Arabidopsis histone acetyltransferase AtGCN5 regulates the floral meristem activity through the WUSCHEL/AGAMOUS pathway. J Biol Chem 278:28246–28251.  https://doi.org/10.1074/jbc.M302787200 CrossRefPubMedGoogle Scholar
  7. Bramsiepe J, Wester K, Weinl C, Roodbarkelari F, Kasili R, Larkin JC et al (2010) Endoreplication controls cell fate maintenance. PLoS Genet 6:e1000996.  https://doi.org/10.1371/journal.pgen.1000996 CrossRefPubMedPubMedCentralGoogle Scholar
  8. Breuer C, Stacey NJ, West CE, Zhao Y, Chory J, Tsukaya H et al (2007) BIN4, a novel component of the plant DNA topoisomerase VI complex, is required for endoreduplication in Arabidopsis. Plant Cell 19:3655–3668.  https://doi.org/10.1105/tpc.107.054833 CrossRefPubMedPubMedCentralGoogle Scholar
  9. Buschmann H, Dols J, Kopischke S, Peña EJ, Andrade-Navarro MA, Heinlein M et al (2015) Arabidopsis KCBP interacts with AIR9 but stays in the cortical division zone throughout mitosis via its MyTH4-FERM domain. J Cell Sci 128:2033–2046.  https://doi.org/10.1242/jcs.156570 CrossRefPubMedGoogle Scholar
  10. Candau R, Zhou JX, Allis CD, Berger SL (1997) Histone acetyltransferase activity and interaction with ADA2 are critical for GCN5 function in vivo. EMBO J 16:555–565.  https://doi.org/10.1093/emboj/16.3.555 CrossRefPubMedPubMedCentralGoogle Scholar
  11. Carré C, Szymczak D, Pidoux J, Antoniewski C (2005) The histone H3 acetylase dGcn5 is a key player in Drosophila melanogaster metamorphosis. Mol Cell Biol 25:8228–8238.  https://doi.org/10.1128/MCB.25.18.8228-8238.2005 CrossRefPubMedPubMedCentralGoogle Scholar
  12. Chen ZJ, Tian L (2007) Roles of dynamic and reversible histone acetylation in plant development and polyploidy. Biochim Biophys Acta 1769:295–307.  https://doi.org/10.1016/j.bbaexp.2007.04.007 CrossRefPubMedPubMedCentralGoogle Scholar
  13. Churchman ML, Brown ML, Kato N, Kirik V, Hülskamp M, Inzé D et al (2006) SIAMESE, a plant-specific cell cycle regulator, controls endoreplication onset in Arabidopsis thaliana. Plant Cell 18:3145–3157.  https://doi.org/10.1105/tpc.106.044834 CrossRefPubMedPubMedCentralGoogle Scholar
  14. Cieniewicz AM, Moreland L, Ringel AE, Mackintosh SG, Raman A, Gilbert TM et al (2014) The bromodomain of Gcn5 regulates site specificity of lysine acetylation on histone H3. Mol Cel Proteom 13:2896–2910.  https://doi.org/10.1074/mcp.M114.038174 CrossRefGoogle Scholar
  15. Cohen R, Schocken J, Kaldis A, Vlachonasios KE, Hark AT, McCain ER (2009) The histone acetyltransferase GCN5 affects the inflorescence meristem and stamen development in Arabidopsis. Planta 230:1207–1221.  https://doi.org/10.1007/s00425-009-1012-5 CrossRefPubMedGoogle Scholar
  16. Dissmeyer N, Weimer AK, Pusch S, De Schutter K, Alvim Kamei CL, Nowack MK et al (2009) Control of cell proliferation, organ growth, and DNA damage response operate independently of dephosphorylation of the Arabidopsis Cdk1 homolog CDKA;1. Plant Cell 21:3641–3654.  https://doi.org/10.1105/tpc.109.070417 CrossRefPubMedPubMedCentralGoogle Scholar
  17. El Refy A, Perazza D, Zekraoui L, Valay J-G, Bechtold N, Brown S et al (2004) The Arabidopsis KAKTUS gene encodes a HECT protein and controls the number of endoreduplication cycles. Mol Genet Genom 270:403–414.  https://doi.org/10.1007/s00438-003-0932-1 CrossRefGoogle Scholar
  18. Folkers U, Berger J, Hülskamp M (1997) Cell morphogenesis of trichomes in Arabidopsis: differential control of primary and secondary branching by branch initiation regulators and cell growth. Development 124:3779–3786PubMedGoogle Scholar
  19. Gegas VC, Wargent JJ, Pesquet E, Granqvist E, Paul ND, Doonan JH (2014) Endopolyploidy as a potential alternative adaptive strategy for Arabidopsis leaf size variation in response to UV-B. J Exp Bot 65:2757–2766.  https://doi.org/10.1093/jxb/ert473 CrossRefPubMedPubMedCentralGoogle Scholar
  20. Grebe M (2012) The patterning of epidermal hairs in Arabidopsis—updated. Curr Opin Plant Biol 15:31–37.  https://doi.org/10.1016/j.pbi.2011.10.010 CrossRefPubMedGoogle Scholar
  21. Hamdoun S, Zhang C, Gill M et al (2015) Differential Roles of Two Homologous Cyclin-Dependent Kinase Inhibitor Genes in Regulating Cell Cycle and Innate Immunity in Arabidopsis. Plant Physiol 170:515–527CrossRefGoogle Scholar
  22. Hark AT, Vlachonasios KE, Pavangadkar KA, Rao S, Gordon H, Adamakis I-D et al (2009) Two Arabidopsis orthologs of the transcriptional coactivator ADA2 have distinct biological functions. Biochim Biophys Acta 1789:117–124.  https://doi.org/10.1016/j.bbagrm.2008.09.003 CrossRefPubMedGoogle Scholar
  23. Hülskamp M (2004) Plant trichomes: a model for cell differentiation. Nat Rev Mol Cell Biol 5:471–480.  https://doi.org/10.1038/nrm1404 CrossRefPubMedGoogle Scholar
  24. Hülskamp M, Misŕa S, Jürgens G (1994) Genetic dissection of trichome cell development in Arabidopsis. Cell 76:555–566CrossRefGoogle Scholar
  25. Hülskamp M, Schnittger A, Folkers U (1999) Pattern formation and cell differentiation: trichomes in Arabidopsis as a genetic model system. Int Rev Cytol 186:147–178CrossRefGoogle Scholar
  26. Ilgenfritz H, Bouyer D, Schnittger A, Mathur J, Kirik V, Schwab B et al (2003) The Arabidopsis STICHEL gene is a regulator of trichome branch number and encodes a novel protein. Plant Physiol 131:643–655.  https://doi.org/10.1104/pp.014209 CrossRefPubMedPubMedCentralGoogle Scholar
  27. Jarillo JA, Piñeiro M, Cubas P, Martínez-Zapater JM (2009) Chromatin remodeling in plant development. Int J Dev Biol 53:1581–1596.  https://doi.org/10.1387/ijdb.072460jj CrossRefPubMedGoogle Scholar
  28. Kalve S, De Vos D, Beemster GTS (2014) Leaf development: a cellular perspective. Front Plant Sci 5:362.  https://doi.org/10.3389/fpls.2014.00362 CrossRefPubMedPubMedCentralGoogle Scholar
  29. Kasili R, Huang CC, Walker JD, Simmons LA, Zhou J, Faulk C et al (2011) BRANCHLESS TRICHOMES links cell shape and cell cycle control in Arabidopsis trichomes. Development 138:2379–2388.  https://doi.org/10.1242/dev.058982 CrossRefPubMedGoogle Scholar
  30. Kim J-Y, Oh JE, Noh Y-S, Noh B (2015) Epigenetic control of juvenile-to-adult phase transition by the Arabidopsis SAGA-like complex. Plant J 83:537–545.  https://doi.org/10.1111/tpj.12908 CrossRefPubMedGoogle Scholar
  31. Li S, Shogren-Knaak MA (2009) The Gcn5 bromodomain of the SAGA complex facilitates cooperative and cross-tail acetylation of nucleosomes. J Biol Chem 284:9411–9417.  https://doi.org/10.1074/jbc.M809617200 CrossRefPubMedPubMedCentralGoogle Scholar
  32. Long JA, Ohno C, Smith ZR, Meyerowitz EM (2006) TOPLESS regulates apical embryonic fate in Arabidopsis. Science 312:1520–1523.  https://doi.org/10.1126/science.1123841 CrossRefPubMedGoogle Scholar
  33. Marks MD, Betancur L, Gilding E, Chen F, Bauer S, Wenger JP et al (2008) A new method for isolating large quantities of Arabidopsis trichomes for transcriptome, cell wall and other types of analyses. Plant J 56:483–492.  https://doi.org/10.1111/j.1365-313X.2008.03611.x CrossRefPubMedGoogle Scholar
  34. Mathur J (2006) Trichome cell morphogenesis in Arabidopsis: a continuum of cellular decisions. Can J Bot 84:604–612CrossRefGoogle Scholar
  35. Melaragno JE, Mehrotra B, Coleman AW (1993) Relationship between endopolyploidy and cell size in epidermal tissue of Arabidopsis. Plant Cell 5:1661–1668.  https://doi.org/10.1105/tpc.5.11.1661 CrossRefPubMedPubMedCentralGoogle Scholar
  36. Morohashi K, Grotewold E (2009) A systems approach reveals regulatory circuitry for Arabidopsis trichome initiation by the GL3 and GL1 selectors. PLoS Genet 5:e1000396.  https://doi.org/10.1371/journal.pgen.1000396 CrossRefPubMedPubMedCentralGoogle Scholar
  37. Oppenheimer DG, Pollock MA, Vacik J, Szymanski DB, Ericson B, Feldmann K et al (1997) Essential role of a kinesin-like protein in Arabidopsis trichome morphogenesis. Proc Natl Acad Sci USA 94:6261–6266CrossRefGoogle Scholar
  38. Pandey R, Müller A, Napoli CA, Selinger DA, Pikaard CS, Richards EJ et al (2002) Analysis of histone acetyltransferase and histone deacetylase families of Arabidopsis thaliana suggests functional diversification of chromatin modification among multicellular eukaryotes. Nucleic Acids Res 30:5036–5055CrossRefGoogle Scholar
  39. Payne CT, Zhang F, Lloyd AM (2000) GL3 encodes a bHLH protein that regulates trichome development in Arabidopsis through interaction with GL1 and TTG1. Genetics 156:1349–1362PubMedPubMedCentralGoogle Scholar
  40. Perazza D, Herzog M, Hülskamp M, Brown S, Dorne AM, Bonneville JM (1999) Trichome cell growth in Arabidopsis thaliana can be derepressed by mutations in at least five genes. Genetics 152:461–476PubMedPubMedCentralGoogle Scholar
  41. Pesch M, Hülskamp M (2011) Role of TRIPTYCHON in trichome patterning in Arabidopsis. BMC Plant Biol 11:130CrossRefGoogle Scholar
  42. Pfluger J, Wagner D (2007) Histone modifications and dynamic regulation of genome accessibility in plants. Curr Opin Plant Biol 10:645–652.  https://doi.org/10.1016/j.pbi.2007.07.013 CrossRefPubMedPubMedCentralGoogle Scholar
  43. Rerie WG, Feldmann KA, Marks MD (1994) The GLABRA2 gene encodes a homeodomain protein required for normal trichome development in Arabidopsis. Genes Dev 8:1388–1399CrossRefGoogle Scholar
  44. Reyes JC (2006) Chromatin modifiers that control plant development. Curr Opin Plant Biol 9:21–27.  https://doi.org/10.1016/j.pbi.2005.11.010 CrossRefPubMedGoogle Scholar
  45. Schellmann S, Hülskamp M (2005) Epidermal differentiation: trichomes in Arabidopsis as a model system. Int J Dev Biol 49:579–584.  https://doi.org/10.1387/ijdb.051983ss CrossRefPubMedGoogle Scholar
  46. Schellmann S, Hülskamp M, Uhrig J (2007) Epidermal pattern formation in the root and shoot of Arabidopsis. Biochem Soc Trans 35:146–148CrossRefGoogle Scholar
  47. Schellmann S, Schnittger A, Kirik V, Wada T, Okada K, Beermann A et al (2002) TRIPTYCHON and CAPRICE mediate lateral inhibition during trichome and root hair patterning in Arabidopsis. EMBO J 21:5036–5046.  https://doi.org/10.1093/emboj/cdf524 CrossRefPubMedPubMedCentralGoogle Scholar
  48. Schnittger A, Folkers U, Schwab B, Jurgens G, Hulskamp M (1999) Generation of a spacing pattern: the role of triptychon in trichome patterning in Arabidopsis. Plant Cell 11:1105–1116CrossRefGoogle Scholar
  49. Servet C, Silva NC, Zhou DX (2010) Histone acetyltransferase AtGCN5/HAG1 is a versatile regulator of developmental and inducible gene expression in Arabidopsis. Mol Plant.  https://doi.org/10.1093/mp/ssq018 CrossRefPubMedGoogle Scholar
  50. Sieberer T, Hauser M-T, Seifert GJ, Luschnig C (2003) PROPORZ1, a putative Arabidopsis transcriptional adaptor protein, mediates auxin and cytokinin signals in the control of cell proliferation. Curr Biol 13:837–842CrossRefGoogle Scholar
  51. Spedale G, Timmers HTM, Pijnappel WW (2012) ATAC-king the complexity of SAGA during evolution. Genes Dev 26:527–541.  https://doi.org/10.1101/gad.184705.111 CrossRefPubMedPubMedCentralGoogle Scholar
  52. Srivastava R, Rai KM, Pandey B, Singh SP, Sawant SV (2015) Spt-Ada-Gcn5-acetyltransferase (SAGA) complex in plants: genome wide identification, evolutionary conservation and functional determination. PLoS One 10:e0134709.  https://doi.org/10.1371/journal.pone.0134709 CrossRefPubMedPubMedCentralGoogle Scholar
  53. Sugimoto-Shirasu K, Roberts K (2003) “Big it up”: endoreduplication and cell-size control in plants. Curr Opin Plant Biol 6:544–553CrossRefGoogle Scholar
  54. Szymanski DB, Jilk RA, Pollock SM, Marks MD (1998) Control of GL2 expression in Arabidopsis leaves and trichomes. Development 125:1161–1171PubMedGoogle Scholar
  55. Szymanski DB, Marks MD, Wick SM (1999) Organized F-actin is essential for normal trichome morphogenesis in Arabidopsis. Plant Cell 11:2331–2347CrossRefGoogle Scholar
  56. Szymanski DB, Lloyd AM, Marks MD (2000) Progress in the molecular genetic analysis of trichome initiation and morphogenesis in Arabidopsis. Trends Plant Sci 5:214–219CrossRefGoogle Scholar
  57. Traas J, Hülskamp M, Gendreau E, Höfte H (1998) Endoreduplication and development: rule without dividing? Curr Opin Plant Biol 1:498–503CrossRefGoogle Scholar
  58. Vlachonasios KE, Thomashow MF, Triezenberg SJ (2003) Disruption mutations of ADA2b and GCN5 transcriptional adaptor genes dramatically affect Arabidopsis growth, development, and gene expression. Plant Cell 15:626–638CrossRefGoogle Scholar
  59. Xu W, Edmondson DG, Evrard YA, Wakamiya M, Behringer RR, Roth SY (2000) Loss of Gcn5l2 leads to increased apoptosis and mesodermal defects during mouse development. Nat Genet 26:229–232.  https://doi.org/10.1038/79973 CrossRefPubMedGoogle Scholar
  60. Yamauchi T, Yamauchi J, Kuwata T, Tamura T, Yamashita T, Bae N et al (2000) Distinct but overlapping roles of histone acetylase PCAF and of the closely related PCAF-B/GCN5 in mouse embryogenesis. Proc Natl Acad Sci USA 97:11303–11306.  https://doi.org/10.1073/pnas.97.21.11303 CrossRefPubMedGoogle Scholar
  61. Zhang X, Oppenheimer DG (2004) A simple and efficient method for isolating trichomes for downstream analyses. Plant Cell Physiol 45:221–224CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Jenna Kotak
    • 1
    • 4
  • Marina Saisana
    • 2
  • Vasilis Gegas
    • 3
    • 5
  • Nikoletta Pechlivani
    • 2
  • Athanasios Kaldis
    • 2
  • Panagiotis Papoutsoglou
    • 2
  • Athanasios Makris
    • 2
  • Julia Burns
    • 1
  • Ashley L. Kendig
    • 1
  • Minnah Sheikh
    • 1
  • Cyrus E. Kuschner
    • 1
  • Gabrielle Whitney
    • 1
  • Hanna Caiola
    • 1
  • John H. Doonan
    • 3
  • Konstantinos E. Vlachonasios
    • 2
  • Elizabeth R. McCain
    • 1
  • Amy T. Hark
    • 1
  1. 1.Biology DepartmentMuhlenberg CollegeAllentownUSA
  2. 2.Department of Botany, School of BiologyAristotle University of ThessalonikiThessalonikiGreece
  3. 3.National Plant Phenomics CentreAberystwyth UniversityAberystwythUK
  4. 4.Molecular Biology, Cell Biology, and Biochemistry DepartmentBrown UniversityProvidenceUSA
  5. 5.Limagrain UK Ltd, Joseph Nickerson Research CentreMarket RasenUK

Personalised recommendations