Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Identification and characterization of mRNA-like noncoding RNAs in Salvia miltiorrhiza


Main conclusion

Identification and characterization of 5,446 mlncRNAs from Salvia miltiorrhiza showed that the majority of identified mlncRNAs were stress responsive, providing a framework for elucidating mlncRNA functions in S. miltiorrhiza.

mRNA-like noncoding RNAs (mlncRNAs) are transcribed by RNA polymerase II and are polyadenylated, capped and spliced. They play important roles in plant development and defense responses. However, there is no information available for mlncRNAs in Salvia miltiorrhiza Bunge, the first Chinese medicinal material entering the international market. To perform a transcriptome-wide identification of S. miltiorrhiza mlncRNAs, we assembled over 8 million RNA-seq reads from GenBank database and 5,624 ESTs from PlantGDB into 44422 unigenes. Using a computational identification pipeline, we identified 5446 S. miltiorrhiza mlncRNA candidates from the assembled unigenes. Of the 5446 mlncRNAs, 2 are primary transcripts of conserved miRNAs, and 2030 can be grouped into 470 families with at least two members in a family. Quantitative real-time PCR analysis of mlncRNAs with at least 900 nt showed that the majority were differentially expressed in roots, stems, leaves and flowers and responsive to methyl jasmonate (MeJA) treatment in S. miltiorrhiza. Analysis of published RNA-seq data showed that a total of 3,044 mlncRNAs were expressed in hairy roots of S. miltiorrhiza and the expression of 1,904 of the 3,044 mlncRNAs was altered by yeast extract and Ag+ treatment. The results indicate that the majority of mlncRNAs are involved in plant response to stress. This study provides a framework for understanding the roles of mlncRNAs in S. miltiorrhiza.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7



Noncoding RNA


Quantitative reverse-transcription PCR


Small RNA




Small-interfering RNA


Long noncoding RNA


mRNA-like noncoding RNA


Primary miRNA


miRNA precursor


Dicer-like 1


Methyl jasmonate


Open reading frame


Food and Drug Administration


4-Hydroxy-3-methylbut-2-en-1-yl diphosphate synthase


Solanesyl diphosphate synthase


  1. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

  2. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297

  3. Ben Amor B, Wirth S, Merchan F, Laporte P, d’Aubenton-Carafa Y, Hirsch J, Maizel A, Mallory A, Lucas A, Deragon JM, Vaucheret H, Thermes C, Crespi M (2009) Novel long non-protein coding RNAs involved in Arabidopsis differentiation and stress responses. Genome Res 19:57–69

  4. Bertone P, Stolc V, Royce TE, Rozowsky JS, Urban AE, Zhu X, Rinn JL, Tongprasit W, Samanta M, Weissman S, Gerstein M, Snyder M (2004) Global identification of human transcribed sequences with genome tiling arrays. Science 306:2242–2246

  5. Birney E, Stamatoyannopoulos JA, Dutta A, Guigo R, Gingeras TR et al (2007) Identification and analysis of functional elements in 1 % of the human genome by the ENCODE pilot project. Nature 447:799–816

  6. Boerner S, McGinnis KM (2012) Computational identification and functional predictions of long noncoding RNA in Zea mays. PLoS ONE 7:e43047

  7. Burleigh SH, Harrison MJ (1997) A novel gene whose expression in Medicago truncatula roots is suppressed in response to colonization by vesicular–arbuscular mycorrhizal (VAM) fungi and to phosphate nutrition. Plant Mol Biol 34:199–208

  8. Chen H, Yuan JP, Chen F, Zhang YL, Song JY (1997) Tanshinone production in Ti-transformed Salvia miltiorrhiza cell suspension cultures. J Biotechnol 58:147–156

  9. Cho J, Koo DH, Nam YH, Han CK, Lim HT, Bang JW, Hur Y (2005) Isolation and characterization of cDNA clones expressed under male sex expression conditions in a monoecious cucumber plant (Cucumis sativus L. cv. Winter Long). Euphytica 146:271–281

  10. Conesa A, Gotz S, García-Gómez JM, Terol J, Talón M, Robles M (2005) Blast2GO: a universal tool for annotation, visualization and analysis infunctional genomics research. Bioinformatics 21:3674–3676

  11. Dai X, Zhuang Z, Zhao PX (2011) Computational analysis of miRNA targets in plants: current status and challenges. Brief Bioinform 12:115–121

  12. Erdmann VA, Szymanski M, Hochberg A, Groot N, Barciszewski J (2000) Non-coding, mRNA-like RNAs database Y2K. Nucleic Acids Res 28:197–200

  13. Gao W, Sun HX, Xiao H, Cui G, Hillwig M, Jackson A, Wang X, Shen Y, Zhao N, Zhang L, Wang XJ, Peters RJ, Huang L (2014) Combining metabolomics and transcriptomics to characterize tanshinone biosynthesis in Salvia miltiorrhiza. BMC Genom 15:73

  14. Gardner PP, Daub J, Tate J, Moore BL, Osuch IH, Griffiths-Jones S, Finn RD, Nawrocki EP, Kolbe DL, Eddy SR, Bateman A (2011) Rfam: Wikipedia, clans and the “decimal” release. Nucleic Acids Res 39:D141–D145

  15. Griffiths-Jones S (2007) Annotating noncoding RNA genes. Annu Rev Genomics Hum Genet 8:279–298

  16. He S, Liu C, Skogerbø G, Zhao H, Wang J, Liu T, Bai B, Zhao Y, Chen R (2008) NONCODE v2.0: decoding the non-coding. Nucleic Acids Res 36:D170–D172

  17. Hua W, Zhang Y, Song J, Zhao L, Wang Z (2011) De novo transcriptome sequencing in Salvia miltiorrhiza to identify genes involved in the biosynthesis of active ingredients. Genomics 98:272–279

  18. Iseli C, Jongeneel CV, Bucher P (1999) ESTScan: a program for detecting, evaluating, and reconstructing potential coding regions in EST sequences. Proc Int Conf Intell Syst Mol Biol, 138–148

  19. Jin J, Liu J, Wang H, Wong L, Chua NH (2013) PLncDB: plant long non-coding RNA database. Bioinformatics 29:1068–1071

  20. Kim DH, Zografos BR, Sung S (2010) Mechanisms underlying vernalization mediated VIN3 induction in Arabidopsis. Plant Signal Behav 5:1457–1459

  21. Li C, Lu S (2014) Genome-wide characterization and comparative analysis of R2R3-MYB transcription factors shows the complexity of MYB-associated regulatory networks in Salvia miltiorrhiza. BMC Genom 15:277

  22. Li R, Yu C, Li Y, Lam TW, Yiu SM, Kristiansen K, Wang J (2009a) SOAP2: an improved ultrafast tool for short read alignment. Bioinformatics 25:1966–1967

  23. Li YG, Song L, Liu M, Hu ZB, Wang ZT (2009b) Advancement in analysis of Salvia miltiorrhizae Radix et Rhizoma (Danshen). J Chromatogr A 1216:1941–1953

  24. Li Y, Sun C, Luo HM, Li XW, Niu YY, Chen SL (2010) Transcriptome characterization for Salvia miltiorrhiza using 454 GS FLX. Yao Xue Xue Bao 45:524–529

  25. Liu C, Muchhal US, Raghothama KG (1997) Differential expression of TPSI1, a phosphate starvation-induced gene in tomato. Plant Mol Biol 33:867–874

  26. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2 (−Delta Delta C(T)) method. Methods 25:402–408

  27. Lu S, Sun YH, Chiang VL (2008) Stress-responsive microRNAs in Populus. Plant J 55:131–151

  28. Luo H, Zhu Y, Song J, Xu L, Sun C, Zhang X, Xu Y, He L, Sun W, Xu H, Wang B, Li X, Li C, Liu J, Chen S (2014) Transcriptional data mining of Salvia miltiorrhiza in response to methyl jasmonate to examine the mechanism of bioactive compound biosynthesis and regulation. Physiol Plant 152:241–255

  29. Ma J, Yan B, Qu Y, Qin F, Yang Y, Hao X, Yu J, Zhao Q, Zhu D, Ao G (2008) Zm401, a short-open reading-frame mRNA or noncoding RNA, is essential for tapetum and microspore development and can regulate the floret formation in maize. J Cell Biochem 105:136–146

  30. Ma Y, Yuan L, Wu B, Li X, Chen S, Lu S (2012) Genome-wide identification and characterization of novel genes involved in terpenoid biosynthesis in Salvia miltiorrhiza. J Exp Bot 63:2809–2823

  31. Maclntosh GC, Wilkerson C, Green PJ (2001) Identification and analysis of Arabidopsis expressed sequence tags characteristic of non-coding RNAs. Plant Physiol 127:765–776

  32. Matsui A, Nguyen AH, Nakaminami K, Seki M (2013) Arabidopsis non-coding RNA regulation in abiotic stress responses. Int J Mol Sci 14:22642–22654

  33. Meyers BC, Axtell MJ, Bartel B, Bartel DP, Baulcombe D, Bowman JL, Cao XF, Carrington JC, Chen XM, Green PJ, Griffiths-Jones S, Jacobsen SE, Martienssen RA, Mallory AC, Poethig S, Qi YJ, Vaucheret H, Voinnet O, Watanabe Y, Weigel D, Zhu JK (2008) Criteria for annotation of plant microRNAs. Plant Cell 20:3186–3190

  34. Murashige T, Skoog I (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Plant Physiol 15:473–477

  35. Ponting CP, Oliver PL, Reik W (2009) Evolution and functions of long noncoding RNAs. Cell 136:629–641

  36. Rodriguez A, Griffiths-Jones S, Ashurst JL, Bradley A (2004) Identification of mammalian microRNA host genes and transcription units. Genome Res 14:1902–1910

  37. Rohrig H, Schmidt J, Miklashevichs E, Schell J, John M (2002) Soybean ENOD40 encodes two peptides that bind to sucrose synthase. Proc Natl Acad Sci USA 99:1915–1920

  38. Rymarquis LA, Kastenmayer JP, Hüttenhofer AG, Green PJ (2008) Diamonds in the rough: mRNA-like non-coding RNAs. Trends Plant Sci 13:329–334

  39. Shao F, Lu S (2013) Genome-wide identification, molecular cloning, expression profiling and posttranscriptional regulation analysis of the Argonaute gene family in Salvia miltiorrhiza, an emerging model medicinal plant. BMC Genom 14:512

  40. Shao F, Lu S (2014) Identification, molecular cloning and expression analysis of five RNA-dependent RNA polymerase genes in Salvia miltiorrhiza. PLoS ONE 9:e95117

  41. Song JY, Luo HM, Li CF, Sun C, Xu J, Chen SL (2013) Salvia miltiorrhiza as medicinal model plant. Yao Xue Xue Bao 48:1099–1106

  42. Sugiyama R, Kazama Y, Miyazawa Y, Matsunaga S, Kawano S (2003) CCLS96.1, a member of a multicopy gene family, may encode a non-coding RNA preferentially transcribed in reproductive organs of Silene latifolia. DNA Res 10:213–220

  43. Taylor CB, Green PJ (1995) Identification and characterization of genes with unstable transcripts (GUTs) in tobacco. Plant Mol Biol 28:27–38

  44. Teramoto H, Toyama T, Takeba G, Tsuji H (1996) Noncoding RNA for CR20, a cytokinin-repressed gene of cucumber. Plant Mol Biol 32:797–808

  45. Tran TT, Zhou F, Marshburn S, Stead M, Kushner SR, Xu Y (2009) De novo computational prediction of non-coding RNA genes in prokaryotic genomes. Bioinformatics 25:2897–2905

  46. Voinnet O (2009) Origin, biogenesis, and activity of plant microRNAs. Cell 136:669–687

  47. Wang M, Wu B, Chen C, Lu S (2014) Identification of mRNA-like non-coding RNAs and validation of a mighty one named MAR in Panax ginseng. J Integr Plant Biol. doi:10.1111/jipb.12239

  48. Wen J, Parker BJ, Weiller GF (2007) In silico identification and characterization of mRNA-like noncoding transcripts in Medicago truncatula. In Silico Biol 7:485–505

  49. Wu B, Li Y, Yan H, Ma Y, Luo H, Yuan L, Chen S, Lu S (2012a) Comprehensive transcriptome analysis reveals novel genes involved in cardiac glycoside biosynthesis and mlncRNAs associated with secondary metabolism and stress response in Digitalis purpurea. BMC Genom 13:15

  50. Wu W, Zhu Y, Zhang L, Yang R, Zhou Y (2012b) Extraction, preliminary structural characterization, and antioxidant activities of polysaccharides from Salvia miltiorrhiza Bunge. Carbohydr Polym 87:1348–1353

  51. Wu HJ, Wang ZM, Wang M, Wang XJ (2013) Widespread long noncoding RNAs as endogenous target mimics for microRNAs in plants. Plant Physiol 161:1875–1884

  52. Xin M, Wang Y, Yao Y, Song N, Hu Z, Qin D, Xie C, Peng H, Ni Z, Sun Q (2011) Identification and characterization of wheat long non-protein coding RNAs responsive to powdery mildew infection and heat stress by using microarray analysis and SBS sequencing. BMC Plant Biol 11:61

  53. Ye J, Fang L, Zheng HK, Zhang Y, Chen J, Zhang ZJ, Wang J, Li ST, Li RQ, Bolund L, Wang J (2006) WEGO: a web tool for plotting GO annotations. Nucleic Acids Res 34(Web Server issue):293–297

  54. Zhang L, Wu B, Zhao D, Li C, Shao F, Lu S (2014a) Genome-wide analysis and molecular dissection of the SPL gene family in Salvia miltiorrhiza. J Integr Plant Biol 56:38–50

  55. Zhang Y, Yan YP, Wu YC, Hua WP, Chen C, Ge Q, Wang ZZ (2014b) Pathway engineering for phenolic acid accumulations in Salvia miltiorrhiza by combinational genetic manipulation. Metab Eng 21:71–80

  56. Zhao G, Shi Q, Han Y, Li S, Wang C (2014) The physiological and biochemical responses of a medicinal plant (Salvia miltiorrhiza L.) to stress caused by various concentrations of NaCl. PLoS ONE 9:e89624

  57. Zuker M (2003) Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 31:3406–3415

Download references


We thank Drs. Yingjie Zhu, Caili Li, Meizhen Wang and Suzhen Chen for kindly providing technical assistance. We appreciate Prof. Xian’en Li at the Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College for providing S. miltiorrhiza plants. This work was supported by grants from the Natural Science Foundation of China (Grant No. 31370327), the Beijing Natural Science Foundation (Grant Nos. 5112026 and 5152021), the Major Scientific and Technological Special Project for Significant New Drugs Creation (Grant No. 2012ZX09301002-001-031), the Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20111106110033), and the Program for Changjiang Scholars and Innovative Research Team in University (PCSIRT, Grant No. IRT1150).

Author information

Correspondence to Shanfa Lu.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, D., Shao, F. & Lu, S. Identification and characterization of mRNA-like noncoding RNAs in Salvia miltiorrhiza . Planta 241, 1131–1143 (2015).

Download citation


  • Methyl jasmonate
  • mRNA-like noncoding RNA
  • Salvia
  • Traditional Chinese medicine
  • Transcriptome-wide analysis