Skip to main content
Log in

A chimeric transcript containing Psy1 and a potential mRNA is associated with yellow flesh color in tomato accession PI 114490

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Carotenoid content is the primary determinant of fruit color that affects nutritional value and appearance in tomato. Phytoene synthase (PSY) is the key regulatory enzyme in the carotenoid biosynthesis pathway. Absent function of PSY1 in tomato fruit results in yellow flesh phenotype. We, here, report that two different transcripts, a wild-type (Psy1) and a chimeric mRNA (Psy1/Unknown), exist in a yellow-fruited tomato accession PI 114490. Psy1/Unknown is generated by joining exons from two different genes, Psy1 and an unknown gene, transcribed using both complementary DNA strands. The Psy1 shows low expression in the fruit of PI 114490, while the expression of Psy1/Unknown in the fruit of PI 114490 shows the same pattern as Psy1 in red fruit. The PSY1/Unknown has a lower function than PSY1 in a bacterial expression system. Coincidence of one single-nucleotide polymorphism (SNP) in the fourth intron and one simple sequence repeat (SSR) with 19 AT repeats in the downstream sequence of Psy1 gene with Psy1/Unknown in a set of yellow-fruited tomato lines indicates that Psy1/Unknown might be caused by the SNP and/or SSR. One possible explanation of these observations is trans-splicing. Severely reduced Psy1 transcript caused by Psy1/Unknown results in low accumulation of carotenoid and yellow flesh in PI 114490.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

PSY:

Phytoene synthase

GGPP:

Geranylgeranyl diphosphate

SNP:

Single-nucleotide polymorphism

SSR:

Simple sequence repeat

MG:

Mature green

B:

Breaker

R:

Ripe

RACE:

Rapid amplification of cDNA ends

ORF:

Open reading frame

RT-PCR:

Reverse-transcription PCR

qRT-PCR:

Quantitative real-time RT-PCR

HPLC:

High-performance liquid chromatography

RPHPLC:

Reversed-phase high-performance liquid chromatography

SL:

Spliced leader

trans-IPP-HH:

Trans-isoprenyl diphosphate synthase

UTR:

Untranslated region

References

  • Andreassi C, Riccio A (2009) To localize or not to localize: mRNA fate is in 3′UTR ends. Trends Cell Biol 19:465–474

    Article  PubMed  CAS  Google Scholar 

  • Armstrong GA (1997) Genetics of eubacterial carotenoid biosynthesis: a colorful tale. Annu Rev Microbiol 51:629–659

    Article  PubMed  CAS  Google Scholar 

  • Bartley GE, Scolnik PA (1993) cDNA cloning, expression during development, and genome mapping of PSY2, a second tomato gene encoding phytoene synthase. J Biol Chem 268:25718–25721

    PubMed  CAS  Google Scholar 

  • Canfield LM, Forage JW, Valenzuela JG (1992) Carotenoids as cellular antioxidants. Proc Soc Exp Biol Med 200:260–265

    Article  PubMed  CAS  Google Scholar 

  • Cazzonelli CI, Pogson BJ (2010) Source to sink: regulation of carotenoid biosynthesis in plants. Trends Plant Sci 15:266–274

    Article  PubMed  CAS  Google Scholar 

  • Chatterjee TK, Fisher RA (2000) Novel alternative splicing and nuclear localization of human RGS12 gene products. J Biol Chem 275:29660–29671

    Article  PubMed  CAS  Google Scholar 

  • Cheng XD, Zhang DF, Chegn ZK, Keller B, Ling HQ (2009) A new family of Ty1-copia-like retrotransposons originated in the tomato genome by a recent horizontal transfer event. Genetics 181:1183–1193

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Cunningham FX Jr, Gantt E (1998) Genes and enzymes of carotenoid biosynthesis in plants. Annu Rev Plant Physiol Plant Mol Biol 49:557–583

    Article  PubMed  CAS  Google Scholar 

  • Cunningham FX Jr, Gantt E (2007) A portfolio of plasmids for identification and analysis of carotenoid pathway enzymes: Adonis aestivalis as a case study. Photosynth Res 92:245–259

    Article  PubMed  CAS  Google Scholar 

  • Darby LA, Ritchie DB, Taylor IB (1978) Isogenic lines of the tomato ‘Ailsa Craig’. In: Davis JN, Hesling JJ (eds) 1977 Annual Report of the Glasshouse Crops Research Institute. GRCI, Littlehampton, pp 168–184

    Google Scholar 

  • DellaPenna D, Pogson BJ (2006) Vitamin synthesis in plants: tocopherols and carotenoids. Annu Rev Plant Biol 57:711–738

    Article  PubMed  CAS  Google Scholar 

  • Fantini E, Falcone G, Frusciante S, Giliberto L, Giuliano G (2013) Dissection of tomato lycopene biosynthesis through virus-induced gene silencing. Plant Physiol 163:986–998

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Fischer SEJ, Butler MD, Pan Q, Ruvkun G (2008) Trans-splicing in C. elegans generates the negative RNAi regulator ERI-6/7. Nature 455:491–496

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Fraser PD, Bramley PM (2004) The biosynthesis and nutritional uses of carotenoids. Prog Lipid Res 43:228–265

    Article  PubMed  CAS  Google Scholar 

  • Fraser PD, Truesdale MR, Bird CR, Schuch W, Bramley PM (1994) Carotenoid biosynthesis during tomato fruit development (evidence for tissue specific gene expression). Plant Physiol 105:405–413

    PubMed  CAS  PubMed Central  Google Scholar 

  • Fraser PD, Kiano JW, Truesdale MR, Schuch W, Bramley PM (1999) Phytoene synthase-2 enzyme activity in tomato does not contribute to carotenoid synthesis in ripening fruit. Plant Mol Biol 40:687–698

    Article  PubMed  CAS  Google Scholar 

  • Fraser PD, Schuch W, Bramley PM (2000) Phytoene synthase from tomato (Lycopersicon esculentum) chloroplasts-partial purification and biochemical properties. Planta 211:361–369

    Article  PubMed  CAS  Google Scholar 

  • Fray RG, Grierson D (1993) Identification and genetic analysis of normal and mutant phytoene synthase genes of tomato by sequencing, complementation and co-suppression. Plant Mol Biol 22:589–602

    Article  PubMed  CAS  Google Scholar 

  • Frenkel-Morgenstern M, Valencia A (2012) Novel domain combinations in proteins encoded by chimeric transcripts. Bioinformatics 28:i67–i74

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Gabler M, Volkmar M, Weinlich S, Herbst A, Dobberthien P, Sklarss S, Fanti L, Pimpinelli S, Kress H, Reuter G, Dorn R (2005) Trans-splicing of the mod(mdg4) complex locus is conserved between the distantly related species Drosophila melanogaster and D. virilis. Genetics 169:723–736

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Gady ALF, Vriezen WH, Van de Wal MHBJ, Huang P, Bovy AG, Visser RGF, Bachem CWB (2012) Induced point mutations in the phytoene synthase 1 gene cause differences in carotenoid content during tomato fruit ripening. Mol Breed 29:801–812

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Galpaz N, Ronen G, Khalfa Z, Zamir D, Hirschberg J (2006) A chromoplast-specific carotenoid biosynthesis pathway is revealed by cloning of the tomato white-flower locus. Plant Cell 18:1947–1960

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Giorio G, Stigliani AL, D’Ambrosio C (2008) Phytoene synthase genes in tomato (Solanum lycopersicum L.): new data on the structures, the deduced amino acid sequences and the expression patterns. FEBS J 275:527–535

    Article  PubMed  CAS  Google Scholar 

  • Giovannucci E (2002) Lycopene and prostate cancer risk. Methodological considerations in the epidemiologic literature. Pure Appl Chem 74:1427–1434

    Article  CAS  Google Scholar 

  • Hirano M, Noda T (2004) Genomic organization of the mouse Msh4 gene producing bicistronic, chimeric and antisense mRNA. Gene 342:165–177

    Article  PubMed  CAS  Google Scholar 

  • Hirschberg J (2001) Carotenoid biosynthesis in flowering plants. Curr Opin Plant Biol 4:210–218

    Article  PubMed  CAS  Google Scholar 

  • Jiang N, Visa S, Wu S, van der Knaap E (2012) Rider transposon insertions and phenotypic change in tomato. In: Grandbastien M-A, Casacuberta JM (eds) Plant transposable elements. Topics in current genetics, vol 24, Springer, Berlin, pp 297–312

  • Kachanovsky DE, Filler S, Isaacson T, Hirschberg J (2012) Epistasis in tomato color mutations involves regulation of phytoene synthase 1 expression by cis-carotenoids. Proc Natl Acad Sci USA 109:19021–19026

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Kawase T, Akatsuka Y, Torikai H, Morishima S, Oka A, Tsujimura A, Miyazaki M, Tsujimura K, Miyamura K, Ogawa S et al (2007) Alternative splicing due to an intronic SNP in HMSD generates a novel minor histocompatibility antigen. Blood 110:1055–1063

    Article  PubMed  CAS  Google Scholar 

  • Labrador M, Mongelard F, Plata-Rengifo P, Baxter EM, Corces VG, Gerasimova TI (2001) Protein encoding by both DNA strands. Nature 409:1000

    Article  PubMed  CAS  Google Scholar 

  • Landrum JT, Bone RA (2001) Lutein, zeaxanthin, and the macular pigment. Arch Biochem Biophys 385:28–40

    Article  PubMed  CAS  Google Scholar 

  • Landrum JT, Bone RA (2004) Dietary lutein & zeaxanthin: reducing the risk for macular degeneration. Agro Food Ind Hi Tech 15:22–25

    CAS  Google Scholar 

  • Lasda EL, Blumenthal T (2011) Trans-splicing. WIREs RNA 2:417–434

    Article  PubMed  CAS  Google Scholar 

  • Lerosen AL, Went FW, Zechmeister L (1941) Relation between genes and carotenoids of the tomato. Proc Natl Acad Sci USA 27:236–242

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Liu YS, Gur A, Ronen G, Causse M, Damidaux R, Buret M, Hirschberg J, Zamir D (2003) There is more to tomato fruit colour than candidate carotenoid genes. Plant Biotechnol J 1:195–207

    Article  PubMed  CAS  Google Scholar 

  • Lois LM, Rodriguez-Concepcion M, Gallego F, Campos N, Boronat A (2000) Carotenoid biosynthesis during tomato fruit development: regulatory role of 1-deoxy-d-xylulose 5-phosphate synthase. Plant J 22:503–513

    Article  PubMed  CAS  Google Scholar 

  • Marchler-Bauer A, Anderson JB, Chitsaz F, Derbyshire MK, DeWeese-Scott C, Fong JH, Geer LY, Geer RC, Gonzales NR, Gwadz M et al (2009) CDD: specific functional annotation with the conserved domain database. Nucleic Acids Res 37:D205–D210

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Mayne ST (1996) Beta-carotene, carotenoids and disease prevention in humans. FASEB J 10:690–701

    PubMed  CAS  Google Scholar 

  • Murray MG, Thompson WF (1980) Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res 8:4321–4325

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Netzer R, Stafsnes MH, Andreassen T, Goksøyr A, Bruheim P, Brautaset T (2010) Biosynthetic pathway for γ-cyclic sarcinaxanthin in Micrococcus luteus: Heterologous expression and evidence for diverse and multiple catalytic functions of C50 carotenoid cyclases. J Bacteriol 192:5688–5699

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Niyogi KK, Björkman O, Grossman AR (1997) The roles of specific xanthophylls in photoprotection. Proc Natl Acad Sci USA 94:14162–14167

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Pogson BJ, Rissler HM, Frank HA (2006) The roles of carotenoids in photosystem II of higher plants. In: Wydrzynski T, Satoh K (eds) Photosystem II: the water/plastoquinone oxidoreductase in photosynthesis. Springer, Dordrecht, pp 515–537

    Google Scholar 

  • Robertson HM, Navik JA, Walden KKO, Honegger H (2007) The bursicon gene in mosquitoes: an unusual example of mRNA trans-splicing. Genetics 176:1351–1353

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Rodriguez-Amaya DB (2001) A guide to carotenoid analysis in foods. ILSI, Washington, DC

    Google Scholar 

  • Rodríguez-Suárez C, Atienza SG, Pistón F (2011) Allelic variation, alternative splicing and expression analysis of Psy1 gene in Hordeum chilense Roem. et Schult. PLoS ONE 6:e19885

    Article  PubMed  PubMed Central  Google Scholar 

  • Romani A, Guerra E, Trerotola M, Alberti S (2003) Detection and analysis of spliced chimeric mRNAs in sequence databanks. Nucleic Acids Res 31:17

    Article  Google Scholar 

  • Ronen G, Cohen M, Zamir D, Hirschberg J (1999) Regulation of carotenoid biosynthesis during tomato fruit development: expression of the gene for lycopene epsilon-cyclase is down-regulated during ripening and is elevated in the mutant Delta. Plant J 17:341–351

    Article  PubMed  CAS  Google Scholar 

  • Sato S, Tabata S, Hirakawa H, Asamizu E, Shirasawa K, Isobe S, Kaneko T, Nakamura Y, Shibata D, Aoki K et al (2012) The tomato genome sequence provides insights into fleshy fruit evolution. Nature 485:635–641

    Article  CAS  Google Scholar 

  • Shumskaya M, Bradbury LMT, Monaco RR, Wurtzel ET (2012) Plastid localization of the key carotenoid enzyme phytoene synthase is altered by isozyme, allelic variation, and activity. Plant Cell 24:3725–3741

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Stahl W, Sies H (2003) Antioxidative activity of carotenoids. Mol Aspects Med 24:345–351

    Article  PubMed  CAS  Google Scholar 

  • Tonucci LH, Holden JM, Beecher GR, Khachik F, Davis CS, Mulokozi G (1995) Carotenoid content of thermally processed tomato-based food products. J Agric Food Chem 43:579–586

    Article  CAS  Google Scholar 

  • Verwoerd TC, Dekker BM, Hoekema A (1989) A small-scale procedure for the rapid isolation of plant RNAs. Nucleic Acids Res 17:2362

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Yang L, Lee O, Chen J, Chen J, Chang CC, Zhou P, Wang ZZ, Ma HH, Sha HF, Feng JX et al (2004) Human acyl-coenzyme A:cholesterol acyltransferase 1 (acat1) sequences located in two different chromosomes (7 and 1) are required to produce a novel ACAT1 isoenzyme with additional sequence at the N-terminus. J Biol Chem 279:46253–46262

    Article  PubMed  CAS  Google Scholar 

  • Yeum KJ, Russell RM (2002) Carotenoid bioavailability and bioconversion. Annu Rev Nutr 22:483–504

    Article  PubMed  CAS  Google Scholar 

  • Yuan D, Chen J, Shen H, Yang W (2008) Genetics of flesh color and nucleotide sequence analysis of phytoene synthase gene 1 in a yellow-fruited tomato accession PI 114490. Sci Hortic 118:20–24

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. David M. Francis and Dr. Esther van der Knaap at the Ohio State University (USA), Tomato Genetics Resource Center at University of California (Davis, USA), and Dr. Haishan Zhu at Yunnan Agricultural University for providing seeds of tomato lines used in this study. We also thank Dr. Francis X. Cunningham, Jr. at the University of Maryland (USA) for providing the plasmid pAC85-b and Dr. David M. Francis for his help in blasting the transcriptome of PI 114490. The work was partially supported by National Program on Key Basic Research Projects (The 973 Program: 2012CB113900) and The National Key Laboratory of Plant Molecular Genetics Open Research Projects.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wencai Yang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 8449 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kang, B., Gu, Q., Tian, P. et al. A chimeric transcript containing Psy1 and a potential mRNA is associated with yellow flesh color in tomato accession PI 114490. Planta 240, 1011–1021 (2014). https://doi.org/10.1007/s00425-014-2052-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-014-2052-z

Keywords

Navigation