Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Narciclasine inhibits the responses of Arabidopsis roots to auxin

  • 670 Accesses

  • 10 Citations

Abstract

The plant hormone auxin plays a central role in the regulation of plant growth and development, as well as in responses to environmental stimuli. Narciclasine (NCS, an Amaryllidaceae alkaloid) isolated from Narcissus tazetta bulbs has a broad range of inhibitory effects on plants. In this study, the role of NCS in responses to auxin in Arabidopsis thaliana roots was investigated. We demonstrated the inhibitory effects of NCS on auxin-inducible lateral root formation, root hair formation, primary root growth, and the expression of primary auxin-inducible genes in Arabidopsis roots using DR5::GUS reporter gene, native auxin promoters (IAA12::GUS, IAA13::GUS), and quantitative reverse transcription PCR analysis. Results also showed that NCS did not affect the expression of cytokinin-inducible ARR5::GUS reporter gene. NCS relieved the auxin-enhanced degradation of the Aux/IAA repressor modulated by the SCFTIR1 ubiquitin–proteasome pathway. In addition, NCS did not alter the auxin-stimulated interaction between IAA7/AXR2 (Aux/IAA proteins) and the F-box protein TIR1 activity of the proteasome. Taken together, these results suggest that NCS acts on the auxin signaling pathway upstream of TIR1, which modulates Aux/IAA protein degradation, and thereby affects the auxin-mediated responses in Arabidopsis roots.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Abbreviations

ARF:

Auxin response factor

Aux/IAA:

Auxin/indole-3-acetic acid

AuxRE:

Auxin response elements

6-BA:

6-Benzylaminopurine

2,4-D:

2,4-Dichlorophenoxyacetic acid

GH3:

Gretchen Hagen3

IAA:

Indole-3-acetic acid

LR:

Lateral root

NAA:

1-Naphthaleneacetic acid

NCS:

Narciclasine

NPA:

1-Naphthylphthalamic acid

PCIB:

p-Chlorophenoxyisobutyric acid

qRT-PCR:

Quantitative reverse transcription-PCR

SAUR:

Small auxin up RNA

TIBA:

Triiodobenzoic acid

TIR1/AFB:

Transport inhibitor response1/auxin signaling F-box protein

TrfA:

Terfestatin A

WT:

Wild type

References

  1. Abel S, Oeller PW, Theologis A (1994) Early auxin-induced genes encode short-lived nuclear proteins. Proc Natl Acad Sci USA 91:326–330

  2. Benkova E, Michniewicz M, Sauer M, Teichmann T, Seifertova D, Jürgens G, Friml J (2003) Local, efflux-dependent auxin gradients as a common module for plant organ formation. Cell 115:591–602

  3. Bi YR, Yung KH, Wong YS (1998) Physiological effects of narciclasine from the mucilage of Narcissus tazetta L. bulbs. Plant Sci 135:103–108

  4. Bi YR, Zhang L, Guo J, Yung K, Wong YS (2003) Narciclasine alters chloroplast membrane structure and inhibits 5-aminolevulinic acid and chlorophyll binding protein accumulation in wheat (Triticum aestivum) leaves. New Zeal J Crop Hort 31:335–344

  5. Bishopp A, Benkova E, Helariutta Y (2011) Sending mixed messages: auxin-cytokinin crosstalk in roots. Curr Opin Plant Biol 14:10–16

  6. Casimiro I, Marchant A, Bhalerao RP, Beeckman T, Dhooge S, Swarup R, Graham N, Inze D, Sandberg G, Casero PJ, Bennett M (2001) Auxin transport promotes Arabidopsis lateral root initiation. Plant Cell 13:843–852

  7. Cheng Y, Dai X, Zhao Y (2004) AtCAND1, a HEAT-repeat protein that participates in auxin signaling in Arabidopsis. Plant Physiol 135:1020–1026

  8. D’Agostino IB, Deruere J, Kieber JJ (2000) Characterization of the response of the Arabidopsis response regulator gene family to cytokinin. Plant Physiol 124:1706–1717

  9. De Rybel B, Audenaert D, Beeckman T, Kepinski S (2009) The past, present, and future of chemical biology in auxin research. ACS Chem Biol 4:987–998

  10. Del Bianco M, Kepinski S (2010) Context, specificity, and self-organization in auxin response. Cold Spring Harb Perspect Biol 3:a00157

  11. Del Pozo JC, Dharmasiri S, Hellman H, Walker L, Gray W, Estelle M (2002) AXR1-ECR1-dependent conjugation of RUB1 to the Arabidopsis cullin AtCUL1 is required for auxin response. Plant Cell 14:421–433

  12. Delbarre A, Muller P, Imhoff V, Guern J (1996) Comparison of mechanisms controlling uptake and accumulation of 2,4-dichlorophenoxy-acetic acid, naphthalene-1-acetic acid, and indole-3-acetic acid in suspension-cultured tobacco cells. Planta 198:532–541

  13. Dharmasiri S, Dharmasiri N, Hellmann H, Estelle M (2003) The RUB/Nedd8 conjugation pathway is required for early development in Arabidopsis. EMBO J 22:1762–1770

  14. Dharmasiri N, Dharmasiri S, Estelle M (2005a) The F-box protein TIR1 is an auxin receptor. Nature 435:441–445

  15. Dharmasiri N, Dharmasiri S, Weijers D, Lechner E, Yamada M, Hobbie L, Ehrismann JS, Jurgens G, Estelle M (2005b) Plant development is regulated by a family of auxin receptor F box proteins. Dev Cell 9:109–119

  16. Dumont P, Ingrassia L, Rouzeau S, Ribaucou F, Thomas S, Roland I, Darro F, Lefranc F, Kiss R (2007) The Amaryllidaceae isocarbostyril narciclasine induces apoptosis by activation of the death receptor and/or mitochondrial pathways in cancer cells but not in normal fibroblasts. Neoplasia 9:766–776

  17. Feng S, Shen Y, Sullivan JA, Rubio V, Xiong Y, Sun TP, Deng XW (2004) Arabidopsis CAND1, an unmodified CUL1-interacting protein, is involved in multiple developmental pathways controlled by ubiquitin/proteasome-mediated protein degradation. Plant Cell 16:1870–1882

  18. Fujinami K, Tanahashi N, Tanaka K, Ichihara A, Cejka Z, Baumeister W, Miyawaki M, Sato T, Nakagawa H (1994) Purification and characterization of the 26S proteasome from spinach leaves. J Biol Chem 269:25905–25910

  19. Fujita H, Syono K (1996) Genetic analysis of the effects of polar auxin transport inhibitors on root growth in Arabidopsis thaliana. Plant Cell Physiol 37:1094–1101

  20. Fukaki H, Tameda S, Masuda H, Tasaka M (2002) Lateral root formation is blocked by a gain-of-function mutation in the SOLITARY-ROOT/IAA14 gene of Arabidopsis. Plant J 29:153–168

  21. Gabrielsen B, Monath T, Huggins J, Kefauver D, Pettit G, Groszek G, Hollingshead M, Kirsi J, Shannon W, Schubert E (1992) Antiviral (RNA) activity of selected Amaryllidaceae isoquinoline constituents and synthesis of related substances. J Nat Prod 55:1569–1581

  22. Gray WM, del Pozo JC, Walker L, Hobbie L, Risseeuw E, Banks T, Crosby WL, Yang M, Ma H, Estelle M (1999) Identification of an SCF ubiquitin-ligase complex required for auxin response in Arabidopsis thaliana. Genes Dev 13:1678–1691

  23. Gray WM, Kepinski S, Rouse D, Leyser O, Estelle M (2001) Auxin regulates SCF(TIR1)-dependent degradation of AUX/IAA proteins. Nature 414:271–276

  24. Greenham K, Santner A, Castillejo C, Mooney S, Sairanen I, Ljung K, Estelle M (2011) The AFB4 auxin receptor is a negative regulator of auxin signaling in seedlings. Curr Biol 21:520–525

  25. Guzman P, Ecker JR (1990) Exploiting the triple response of Arabidopsis to identify ethylene-related mutants. Plant Cell 2:513–523

  26. Hagen G, Guilfoyle T (2002) Auxin-responsive gene expression: genes, promoters and regulatory factors. Plant Mol Biol 49:373–385

  27. Hartwell JL (1967) Plants used against cancer: a survey. Lloydia 30:379–436

  28. Hayashi K, Jones AM, Ogino K, Yamazoe A, Oono Y, Inoguchi M, Kondo H, Nozaki H (2003) Yokonolide B, a novel inhibitor of auxin action, blocks degradation of AUX/IAA factors. J Biol Chem 278:23797–23806

  29. Hayashi K, Tan X, Zheng N, Hatate T, Kimura Y, Kepinski S, Nozaki H (2008) Small-molecule agonists and antagonists of F-box protein-substrate interactions in auxin perception and signaling. Proc Natl Acad Sci USA 105:5632–5637

  30. Himanen K, Boucheron E, Vanneste S, De Almeida Engler J, Inze D, Beeckman T (2002) Auxin-mediated cell cycle activation during early lateral root initiation. Plant Cell 14:2339–2351

  31. Kepinski S, Leyser O (2005) The Arabidopsis F-box protein TIR1 is an auxin receptor. Nature 435:446–451

  32. Kim J, Harter K, Theologis A (1997) Protein-protein interactions among the Aux/IAA proteins. Proc Natl Acad Sci USA 94:11786–11791

  33. Kornienko A, Evidente A (2008) Chemistry, biology, and medicinal potential of narciclasine and its congeners. Chem Rev 108:1982–2014

  34. Lefranc F, Sauvage S, Van Goietsenoven G, Megalizzi V, Lamoral-Theys D, Debeir O, Spiegl-Kreinecker S, Berger W, Mathieu V, Decaestecker C, Kiss R (2009) Narciclasine, a plant growth modulator, activates Rho and stress fibers in glioblastoma cells. Mol Cancer Ther 8:1739–1750

  35. Lincoln C, Britton JH, Estelle M (1990) Growth and development of the axr1 mutants of Arabidopsis. Plant Cell 2:1071–1080

  36. Luschnig C, Gaxiola RA, Grisafi P, Fink GR (1998) EIR1, a root-specific protein involved in auxin transport, is required for gravitropism in Arabidopsis thaliana. Genes Dev 12:2175–2187

  37. Maraschin Fdos S, Memelink J, Offringa R (2009) Auxin-induced, SCF(TIR1)-mediated poly-ubiquitination marks AUX/IAA proteins for degradation. Plant J 59:100–109

  38. Masucci JD, Schiefelbein JW (1996) Hormones act downstream of TTG and GL2 to promote root hair outgrowth during epidermis development in the Arabidopsis root. Plant Cell 8:1505–1517

  39. Morris DA (2000) Transmembrane auxin carrier systems-dynamic regulators of polar auxin transport. Plant Growth Regul 32:161–172

  40. Muller A, Guan C, Galweiler L, Tanzler P, Huijser P, Marchant A, Parry G, Bennett M, Wisman E, Palme K (1998) AtPIN2 defines a locus of Arabidopsis for root gravitropism control. EMBO J 17:6903–6911

  41. Oono Y, Ooura C, Rahman A, Aspuria ET, Hayashi K, Tanaka A, Uchimiya H (2003) p-Chlorophenoxyisobutyric acid impairs auxin response in Arabidopsis root. Plant Physiol 133:1135–1147

  42. Overvoorde PJ, Okushima Y, Alonso JM, Chan A, Chang C, Ecker JR, Hughes B, Liu A, Onodera C, Quach H, Smith A, Yu G, Theologis A (2005) Functional genomic analysis of the AUXIN/INDOLE-3-ACETIC ACID gene family members in Arabidopsis thaliana. Plant Cell 17:3282–3300

  43. Pelagio-Flores R, Ortiz-Castro R, Mendez-Bravo A, Macias-Rodriguez L, Lopez-Bucio J (2011) Serotonin, a tryptophan-derived signal conserved in plants and animals, regulates root system architecture probably acting as a natural auxin inhibitor in Arabidopsis thaliana. Plant Cell Physiol 52:490–508

  44. Pickart CM (2001) Mechanisms underlying ubiquitination. Annu Rev Biochem 70:503–533

  45. Pickett FB, Wilson AK, Estelle M (1990) The aux1 mutation of Arabidopsis confers both auxin and ethylene resistance. Plant Physiol 94:1462–1466

  46. Pitts RJ, Cernac A, Estelle M (1998) Auxin and ethylene promote root hair elongation in Arabidopsis. Plant J 16:553–560

  47. Rouse D, Mackay P, Stirnberg P, Estelle M, Leyser O (1998) Changes in auxin response from mutations in an AUX/IAA gene. Science 279:1371–1373

  48. Ruegger M, Dewey E, Gray WM, Hobbie L, Turner J, Estelle M (1998) The TIR1 protein of Arabidopsis functions in auxin response and is related to human SKP2 and yeast grr1p. Genes Dev 12:198–207

  49. Santner A, Estelle M (2009) Recent advances and emerging trends in plant hormone signalling. Nature 459:1071–1078

  50. Staswick PE (2009) The tryptophan conjugates of jasmonic and indole-3-acetic acids are endogenous auxin inhibitors. Plant Physiol 150:1310–1321

  51. Sungur C, Miller S, Bergholz J, Hoye RC, Brisbois RG, Overvoorde P (2007) The small molecule 2-furylacrylic acid inhibits auxin-mediated responses in Arabidopsis thaliana. Plant Cell Physiol 48:1693–1701

  52. Swarup R, Friml J, Marchant A, Ljung K, Sandberg G, Palme K, Bennett M (2001) Localization of the auxin permease AUX1 suggests two functionally distinct hormone transport pathways operate in the Arabidopsis root apex. Genes Dev 15:2648–2653

  53. Swarup R, Parry G, Graham N, Allen T, Bennett M (2002) Auxin cross-talk: integration of signalling pathways to control plant development. Plant Mol Biol 49:411–426

  54. Swarup K, Benkova E, Swarup R, Casimiro I, Peret B, Yang Y, Parry G, Nielsen E, De Smet I, Vanneste S, Levesque MP, Carrier D, James N, Calvo V, Ljung K, Kramer E, Roberts R, Graham N, Marillonnet S, Patel K, Jones JD, Taylor CG, Schachtman DP, May S, Sandberg G, Benfey P, Friml J, Kerr I, Beeckman T, Laplaze L, Bennett MJ (2008) The auxin influx carrier LAX3 promotes lateral root emergence. Nat Cell Biol 10:946–954

  55. Szemenyei H, Hannon M, Long JA (2008) TOPLESS mediates auxin-dependent transcriptional repression during Arabidopsis embryogenesis. Science 319:1384–1386

  56. Tan X, Calderon-Villalobos LI, Sharon M, Zheng C, Robinson CV, Estelle M, Zheng N (2007) Mechanism of auxin perception by the TIR1 ubiquitin ligase. Nature 446:640–645

  57. Tatematsu K, Kumagai S, Muto H, Sato A, Watahiki MK, Harper RM, Liscum E, Yamamoto KT (2004) MASSUGU2 encodes Aux/IAA19, an auxin-regulated protein that functions together with the transcriptional activator NPH4/ARF7 to regulate differential growth responses of hypocotyl and formation of lateral roots in Arabidopsis thaliana. Plant Cell 16:379–393

  58. Tiwari SB, Hagen G, Guilfoyle T (2003) The roles of auxin response factor domains in auxin-responsive transcription. Plant Cell 15:533–543

  59. Ulmasov T, Murfett J, Hagen G, Guilfoyle TJ (1997) Aux/IAA proteins repress expression of reporter genes containing natural and highly active synthetic auxin response elements. Plant Cell 9:1963–1971

  60. Ulmasov T, Hagen G, Guilfoyle TJ (1999) Activation and repression of transcription by auxin-response factors. Proc Natl Acad Sci USA 96:5844–5849

  61. Vanneste S, Friml J (2009) Auxin: a trigger for change in plant development. Cell 136:1005–1016

  62. Weijers D, Benkova E, Jager KE, Schlereth A, Hamann T, Kientz M, Wilmoth JC, Reed JW, Jürgens G (2005) Developmental specificity of auxin response by pairs of ARF and Aux/IAA transcriptional regulators. EMBO J 24:1874–1885

  63. Woodward AW, Bartel B (2005) Auxin: regulation, action, and interaction. Ann Bot 95:707–735

  64. Yamazoe A, Hayashi K, Kepinski S, Leyser O, Nozaki H (2005) Characterization of terfestatin A, a new specific inhibitor for auxin signaling. Plant Physiol 139:779–789

  65. Zheng J, Yang X, Harrell JM, Ryzhikov S, Shim EH, Lykke-Andersen K, Wei N, Sun H, Kobayashi R, Zhang H (2002a) CAND1 binds to unneddylated CUL1 and regulates the formation of SCF ubiquitin E3 ligase complex. Mol Cell 10:1519–1526

  66. Zheng N, Schulman BA, Song L, Miller JJ, Jeffrey PD, Wang P, Chu C, Koepp DM, Elledge SJ, Pagano M, Conaway RC, Conaway JW, Harper JW, Pavletich NP (2002b) Structure of the Cul1-Rbx1-Skp1-F boxSkp2 SCF ubiquitin ligase complex. Nature 416:703–709

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (No. 30670191). The authors thank Ben Scheres (Utrecht University, The Netherlands) for DR5::GUS plants, Mark Estelle (University of California San Diego, USA) for GST-AXR2-expressing E. coli, myc-TIR1 seeds, D. Weijers (ZMBP, Germany) for IAA13::GUS, IAA12::GUS, and ARR5::GUS, HS::AXR3NT-GUS, HS::axr3-1NT-GUS, HS::GUS, tir1-1, axr1-3, axr1-12, aux1-7 mutants from the Arabidopsis Biological Resource Center (Columbus, OH, USA). We thank Dr. Jiangqi Wen for comments on the manuscript.

Author information

Correspondence to Yurong Bi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 4 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Hu, Y., Yang, L., Na, X. et al. Narciclasine inhibits the responses of Arabidopsis roots to auxin. Planta 236, 597–612 (2012). https://doi.org/10.1007/s00425-012-1632-z

Download citation

Keywords

  • Auxin signaling
  • Aux/IAAs
  • Lateral root
  • Narciclasine
  • Proteasome
  • SCFTIR1 ubiquitin protein ligase