Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

AtPTR4 and AtPTR6 are differentially expressed, tonoplast-localized members of the peptide transporter/nitrate transporter 1 (PTR/NRT1) family

  • 1103 Accesses

  • 32 Citations

Abstract

Members of the peptide transporter/nitrate transporter 1 (PTR/NRT1) family in plants transport a variety of substrates like nitrate, di- and tripepetides, auxin and carboxylates. We isolated two members of this family from Arabidopsis, AtPTR4 and AtPTR6, which are highly homologous to the characterized di- and tripeptide transporters AtPTR1, AtPTR2 and AtPTR5. All known substrates of members of the PTR/NRT1 family were tested using heterologous expression in Saccharomyces cerevisiae mutants and oocytes of Xenopus laevis, but none could be identified as substrate of AtPTR4 or AtPTR6. AtPTR4 and AtPTR6 show distinct expression patterns, while AtPTR4 is expressed in the vasculature of the plants, AtPTR6 is highly expressed in pollen and during senescence. Phylogenetic analyses revealed that AtPTR2, 4 and 6 belong to one clade of subgoup II, whereas AtPTR1 and 5 are found in a second clade. Like AtPTR2, AtPTR4-GFP and AtPTR6-GFP fusion proteins are localized at the tonoplast. Vacuolar localization was corroborated by co-localization of AtPTR2-YFP with the tonoplast marker protein GFP-AtTIP2;1 and AtTIP1;1-GFP. This indicates that the two clades reflect different intracellular localization at the tonoplast (AtPTR2, 4, 6) and plasma membrane (AtPTR1, 5), respectively.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Abbreviations

aa :

Amino acid

GFP:

Green fluorescent protein

GUS:

β-Glucuronidase

N:

Nitrogen

ORF:

Open reading frame

YFP:

Yellow fluorescent protein

References

  1. Abel S, Theologis A (1994) Transient transformation of Arabidopsis leaf protoplasts: a versatile experimental system to study gene expression. Plant J 5:421–427

  2. Alexandrov NN, Troukhan ME, Brover VV, Tatarinova T, Flavell RB, Feldmann KA (2006) Features of Arabidopsis genes and genome discovered using full-length cDNAs. Plant Mol Biol 60:69–85

  3. Ausubel F, Brent R, Kingston R, Moore D, Seidman J, Smith J, Struhl K (1994) Current protocols in molecular biology. Wiley, New York

  4. Baukrowitz T, Tucker SJ, Schulte U, Benndorf K, Ruppersberg JP, Fakler B (1999) Inward rectification in KATP channels: a pH switch in the pore. EMBO J 18:847–853

  5. Bock KW, Honys D, Ward JM, Padmanaban S, Nawrocki EP, Hirschi KD, Twell D, Sze H (2006) Integrating membrane transport with male gametophyte development and function through transcriptomics. Plant Physiol 140:1151–1168

  6. Boursiac Y, Chen S, Luu DT, Sorieul M, Van Den Dries N, Maurel C (2005) Early effects of salinity on water transport in Arabidopsis roots. Molecular and cellular features of aquaporin expression. Plant Physiol 139:790–805

  7. Buchanan-Wollaston V (1997) The molecular biology of leaf senescence. J Exp Bot 48:181–199

  8. Campalans A, Pages M, Messeguer R (2001) Identification of differentially expressed genes by the cDNA-AFLP technique during dehydration of almond (Prunus amygdalus). Tree Physiol 21:633–643

  9. Carter C, Pan SQ, Jan ZH, Avila EL, Girke T, Raikhel NV (2004) The vegetative vacuole proteome of Arabidopsis thaliana reveals predicted and unexpected proteins. Plant Cell 16:3285–3303

  10. Chiang CS, Stacey G, Tsay YF (2004) Mechanisms and functional properties of two peptide transporters, AtPTR2 and fPTR2. J Biol Chem 279:30150–30157

  11. Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743

  12. Dietrich D, Hammes U, Thor K, Suter Grotemeyer M, Flückiger R, Slusarenko AJ, Ward JM, Rentsch D (2004) AtPTR1, a plasma membrane peptide transporter expressed during seed germination and in vascular tissue of Arabidopsis. Plant J 40:488–499

  13. Dohmen RJ, Strasser AW, Honer CB, Hollenberg CP (1991) An efficient transformation procedure enabling long-term storage of competent cells of various yeast genera. Yeast 7:691–692

  14. Dunkley TPJ, Hester S, Shadforth IP, Runions J, Weimar T, Hanton SL, Griffin JL, Bessant C, Brandizzi F, Hawes C, Watson RB, Dupree P, Lilley KS (2006) Mapping the Arabidopsis organelle proteome. Proc Natl Acad Sci USA 103:6518–6523

  15. Endler A, Meyer S, Schelbert S, Schneider T, Weschke W, Peters SW, Keller F, Baginsky S, Martinoia E, Schmidt UG (2006) Identification of a vacuolar sucrose transporter in barley and Arabidopsis mesophyll cells by a tonoplast proteomic approach. Plant Physiol 141:196–207

  16. Frommer WB, Hummel S, Rentsch D (1994) Cloning of an Arabidopsis histidine transporting protein related to nitrate and peptide transporters. FEBS Lett 347:185–189

  17. Grudkowska M, Zagdanska B (2004) Multifunctional role of plant cysteine proteinases. Acta Biochim Pol 51:609–624

  18. Hammes UZ, Meier S, Dietrich D, Ward JM, Rentsch D (2010) Functional properties of the Arabidopsis peptide transporters AtPTR1 and AtPTR5. J Biol Chem 285:39710–39717

  19. Herman EM, Larkins BA (1999) Protein storage bodies and vacuoles. Plant Cell 11:601

  20. Higgins CF, Payne JW (1978) Peptide transport by germinating barley embryos: uptake of physiological di- and tripeptides. Planta 138:211–215

  21. Higgins CF, Payne JW (1982) Plant peptides. In: Boulter D, Parthier B (eds) Nucleic acids and proteins in plants. Encyclopedia of plant physiology. Springer, Berlin, pp 438–458

  22. Himelblau E, Amasino RM (2001) Nutrients mobilized from leaves of Arabidopsis thaliana during leaf senescence. J Plant Physiol 158:1317–1323

  23. Hörtensteiner S, Feller U (2002) Nitrogen metabolism and remobilization during senescence. J Exp Bot 53:927–937

  24. Hruz T, Laule O, Szabo G, Wessendorp F, Bleuler S, Oertle L, Widmayer P, Gruissem W, Zimmermann P (2008) Genevestigator V3: a reference expression database for the meta-analysis of transcriptomes. Adv Bioinformatics 2008:420747

  25. Jamaï A, Chollet JF, Delrot S (1994) Proton-peptide co-transport in broad bean leaf tissues. Plant Physiol 106:1023–1031

  26. Jeong JY, Suh S, Guan CH, Tsay YF, Moran N, Oh CJ, An CS, Demchenko KN, Pawlowski K, Lee Y (2004) A nodule-specific dicarboxylate transporter from alder is a member of the peptide transporter family. Plant Physiol 134:969–978

  27. Karim S, Holmstrom KO, Mandal A, Dahl P, Hohmann S, Brader G, Palva ET, Pirhonen M (2007) AtPTR3, a wound-induced peptide transporter needed for defence against virulent bacterial pathogens in Arabidopsis. Planta 225:1431–1445

  28. Komarova NY, Thor K, Gubler A, Meier S, Dietrich D, Weichert A, Grotemeyer Suter M, Tegeder M, Rentsch D (2008) AtPTR1 and AtPTR5 transport dipeptides in planta. Plant Physiol 148:856–869

  29. Koncz C, Schell J (1986) The promoter of Tl-DNA gene 5 controls the tissue-specific expression of chimeric genes carried by a novel type of Agrobacterium binary vector. Mol Gen Genet 204:383–396

  30. Krouk G, Lacombe B, Bielach A, Perrine-Walker F, Malinska K, Mounier E, Hoyerova K, Tillard P, Leon S, Ljung K (2010) Nitrate-regulated auxin transport by NRT1.1 defines a mechanism for nutrient sensing in plants. Dev Cell 18:927–937

  31. Li JY, Fu YL, Pike SM, Bao J, Tian W, Zhang Y, Chen CZ, Zhang Y, Li HM, Huang J, Li LG, Schroeder JI, Gassmann W, Gong JM (2010) The Arabidopsis nitrate transporter NRT1.8 functions in nitrate removal from the xylem sap and mediates cadmium tolerance. Plant Cell 22:1633–1646

  32. Lin CM, Koh S, Stacey G, Yu SM, Lin TY, Tsay YF (2000) Cloning and functional characterization of a constitutively expressed nitrate transporter gene, OsNRT1, from rice. Plant Physiol 122:379–388

  33. Lin SH, Kuo HF, Canivenc Gv, Lin CS, Lepetit M, Hsu PK, Tillard P, Lin HL, Wang YY, Tsai CB, Gojon A, Tsay YF (2008) Mutation of the Arabidopsis NRT1.5 nitrate transporter causes defective root-to-shoot nitrate transport. Plant Cell 20:2514–2528

  34. Martinoia E, Maeshima M, Neuhaus HE (2007) Vacuolar transporters and their essential role in plant metabolism. J Exp Bot 58:83–102

  35. Marty F (1999) Plant vacuoles. Plant Cell 11:587–600

  36. Mignone F, Gissi C, Liuni S, Pesole G (2002) Untranslated regions of mRNAs. Genome Biol 3:1-0004.0010

  37. Miranda M, Borisjuk L, Tewes A, Dietrich D, Rentsch D, Weber H, Wobus U (2003) Peptide and amino acid transporters are differentially regulated during seed development and germination in faba bean. Plant Physiol 132:1950–1960

  38. Müntz K (2007) Protein dynamics and proteolysis in plant vacuoles. J Exp Bot 58:2391–2407

  39. Näsholm T, Kielland K, Ganeteg U (2009) Uptake of organic nitrogen by plants. New Phytol 182:31–48

  40. Neuhaus JM, Boevink P (2001) The green fluorescent protein (GFP) as reporter in plant cells. In: Hawes CR, Satiat-Jeunemaitre B (eds) Plant cell biology. Oxford University Press, Oxford, pp 127–142

  41. Ouyang J, Cai Z, Xia K, Wang Y, Duan J, Zhang M (2010) Identification and analysis of eight peptide transporter homologs in rice. Plant Sci 179:374–382

  42. Palma JM, Sandalio LM, Javier Corpas F, Romero-Puertas MC, McCarthy I, del Rìo LA (2002) Plant proteases, protein degradation, and oxidative stress: role of peroxisomes. Plant Physiol Biochem 40:521–530

  43. Parrott DL, McInnerney K, Feller U, Fischer AM (2007) Steam-girdling of barley (Hordeum vulgare) leaves leads to carbohydrate accumulation and accelerated leaf senescence, facilitating transcriptomic analysis of senescence-associated genes. New Phytol 176:56–69

  44. Paungfoo-Lonhienne C, Lonhienne TGA, Rentsch D, Robinson N, Christie M, Webb RI, Gamage HK, Carroll BJ, Schenk PM, Schmidt S (2008) Plants can use protein as a nitrogen source without assistance from other organisms. Proc Natl Acad Sci USA 105:4524–4529

  45. Paungfoo-Lonhienne C, Schenk PM, Lonhienne TGA, Brackin R, Meier S, Rentsch D, Schmidt S (2009) Nitrogen affects cluster root formation and expression of putative peptide transporters. J Exp Bot 60:2665–2676

  46. Rentsch D, Laloi M, Rouhara I, Schmelzer E, Delrot S, Frommer WB (1995) NTR1 encodes a high affinity oligopeptide transporter in Arabidopsis. FEBS Lett 370:264–268

  47. Rentsch D, Schmidt S, Tegeder M (2007) Transporters for uptake and allocation of organic nitrogen compounds in plants. FEBS Lett 581:2281–2289

  48. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, New York

  49. Schnell Ramos M, Abele R, Nagy R, Suter Grotemeyer M, Tampe R, Rentsch D, Martinoia E (2011) Characterization of a transport activity for long-chain peptides in barley mesophyll vacuoles. J Exp Bot 62:2403–2410

  50. Schwacke R, Schneider A, van der Graaff E, Fischer K, Catoni E, Desimone M, Frommer WB, Flügge UI, Kunze R (2003) ARAMEMNON, a novel database for Arabidopsis integral membrane proteins. Plant Physiol 131:16–26

  51. Shimaoka T, Ohnishi M, Sazuka T, Mitsuhashi N, Hara-Nishimura I, Shimazaki KI, Maeshima M, Yokota A, Tomizawa KI, Mimura T (2004) Isolation of intact vacuoles and proteomic analysis of tonoplast from suspension-cultured cells of Arabidopsis thaliana. Plant Cell Physiol 45:672–683

  52. Song W, Steiner HY, Zhang L, Naider F, Stacey G, Becker JM (1996) Cloning of a second Arabidopsis peptide transport gene. Plant Physiol 110:171–178

  53. Song WY, Sohn EJ, Martinoia E, Lee YJ, Yang YY, Jasinski M, Forestier C, Hwang I, Lee Y (2003) Engineering tolerance and accumulation of lead and cadmium in transgenic plants. Nat Biotechnol 21:914–919

  54. Swarbreck D, Wilks C, Lamesch P, Berardini TZ, Garcia-Hernandez M, Foerster H, Li D, Meyer T, Muller R, Ploetz L, Radenbaugh A, Singh S, Swing V, Tissier C, Zhang P, Huala E (2007) The Arabidopsis Information Resource (TAIR): gene structure and function annotation. Nucleic Acids Res 36:D1009–D1014

  55. Swofford DL (2003) PAUP*. Phylogenetic analysis using parsimony (* and other methods). Sinauer Associates, Sunderland, Massachusetts

  56. Tegeder M, Rentsch D (2010) Uptake and partitioning of amino acids and peptides. Mol Plant 3:997–1011

  57. Tsay YF, Chiu CC, Tsai CB, Ho CH, Hsu PK (2007) Nitrate transporters and peptide transporters. FEBS Lett 581:2290–2300

  58. Wang Y, Zhang WZ, Song LF, Zou JJ, Su Z, Wu WH (2008) Transcriptome analyses show changes in gene expression to accompany pollen germination and tube growth in Arabidopsis. Plant Physiol 148:1201–1211

  59. Waterworth WM, West CE, Bray CM (2000) The barley scutellar peptide transporter: biochemical characterization and localization to the plasma membrane. J Exp Bot 51:1201–1209

  60. West CE, Waterworth WM, Stephens SM, Smith CP, Bray CM (1998) Cloning and functional characterisation of a peptide transporter expressed in the scutellum of barley grain during the early stages of germination. Plant J 15:221–229

  61. Winter D, Vinegar B, Nahal H, Ammar R, Wilson GV, Provart NJ (2007) An “electronic fluorescent pictograph” browser for exploring and analyzing large-scale biological data sets. PLoS ONE 2:e718

  62. Wright DE (1962) Amino acid uptake by plant roots. Arch Biochem Biophys 97:174–180

  63. Xiang C, Han P, Lutziger I, Wang K, Oliver DJ (1999) A mini binary vector series for plant transformation. Plant Mol Biol 40:711–717

  64. Yamashita T, Shimada S, Guo W, Sato K, Kohmura E, Hayakawa T, Takagi T, Tohyama M (1997) Cloning and functional expression of a brain peptide/histidine transporter. J Biol Chem 272:10205–10211

Download references

Acknowledgments

We wish to thank Erwin Sigel and Matthias Hediger (University of Bern) for providing Xenopus oocytes, Christophe Maurel (INRA/Montpellier) for providing AtTIP1;1-GFP and GFP-AtTIP2;1 plants and John M. Ward (University of Minnesota) for help with the phylogenetic analysis. This work was supported by grants from the Swiss National Science Foundation 3100A0–107507 and 31003A_127340, and EU Marie Curie Research Training Network ‘VaTEP—Vacuolar Transport Equipment for Growth Regulation of Plants’ (MRTN-CT-2006-035833).

Author information

Correspondence to Doris Rentsch.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Weichert, A., Brinkmann, C., Komarova, N.Y. et al. AtPTR4 and AtPTR6 are differentially expressed, tonoplast-localized members of the peptide transporter/nitrate transporter 1 (PTR/NRT1) family. Planta 235, 311–323 (2012). https://doi.org/10.1007/s00425-011-1508-7

Download citation

Keywords

  • Arabidopsis
  • Dipeptide
  • Peptide
  • Tonoplast
  • Transport