Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Redirection of the phenylpropanoid pathway to feruloyl malate in Arabidopsis mutants deficient for cinnamoyl-CoA reductase 1


Cinnamoyl-CoA reductase 1 (CCR1, gene At1g15950) is the main CCR isoform implied in the constitutive lignification of Arabidopsis thaliana. In this work, we have identified and characterized two new knockout mutants for CCR1. Both have a dwarf phenotype and a delayed senescence. At complete maturity, their inflorescence stems display a 25–35% decreased lignin level, some alterations in lignin structure with a higher frequency of resistant interunit bonds and a higher content in cell wall-bound ferulic esters. Ferulic acid-coniferyl alcohol ether dimers were found for the first time in dicot cell walls and in similar levels in wild-type and mutant plants. The expression of CCR2, a CCR gene usually involved in plant defense, was increased in the mutants and could account for the biosynthesis of lignins in the CCR1-knockout plants. Mutant plantlets have three to four-times less sinapoyl malate (SM) than controls and accumulate some feruloyl malate. The same compositional changes occurred in the rosette leaves of greenhouse-grown plants. By contrast and relative to the control, their stems accumulated unusually high levels of both SM and feruloyl malate as well as more kaempferol glycosides. These findings suggest that, in their hypolignified stems, the mutant plants would avoid the feruloyl-CoA accumulation by its redirection to cell wall-bound ferulate esters, to feruloyl malate and to SM. The formation of feruloyl malate to an extent far exceeding the levels reported so far indicates that ferulic acid is a potential substrate for the enzymes involved in SM biosynthesis and emphasizes the remarkable plasticity of Arabidopsis phenylpropanoid metabolism.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8


Col 0:



Cinnamoyl-CoA reductase


Feruloyl glucose


Feruloyl malate


Flanking sequence tag


Ferulate -5-hydroxylase


Gas chromatography-mass spectrometry


Liquid chromatography-mass spectrometry


Standard error


Sinapoyl malate








  1. Abdulrazzak N, Pollet B, Ehlting J, Larsen K, Asnaghi C, Ronseau S, Proux C, Erhardt M, Seltzer V, Renou J-P, Ullmann P, Pauly M, Lapierre C, Werck-Reichhart D (2006) A coumaroyl-ester-3-hydroxylase insertion mutant reveals the existence of nonredundant meta-hydroxylation pathways and essential roles for phenolic precursors in cell expansion and plant growth. Plant Physiol 140:30–48

  2. Alonso JM, Stepanova AN, Leisse TJ, Kim CJ, Chen HM, Shinn P, Stevenson DK, Zimmerman J, Barajas P, Cheuk R, Gadrinab C, Heller C, Jeske A, Koesema E, Meyers CC, Parker H, Prednis L, Ansari Y, Choy N, Deen H, Geralt M, Hazari N, Hom E, Karnes M, Mulholland C, Ndubaku R (2003) Genome-wide insertional mutagenesis of Arabidopsis thaliana. Science 301:653–657

  3. Besseau S, Hoffmann L, Geoffroy P, Lapierre C, Pollet B, Legrand M (2007) Flavonoid accumulation in Arabidopsis repressed in lignin synthesis affects auxin transport and plant growth. Plant Cell 19:148–162

  4. Boerjan W, Ralph J, Baucher M (2003) Lignin biosynthesis. Annu Rev Plant Biol 54:519–546

  5. Brunow G, Kilpelainen I, Sipila J, Syrjanen K, Karhunen P, Setala H, Rummakko P (1998) Oxidative coupling of phenols and the biosynthesis of lignin. In: Lewis NG, Sarkanen S (eds) Lignin and lignan biosynthesis. ACS Symposium series 697, Washington DC, pp 131–147

  6. Cano-Delgado A, Penfield S, Smith C, Catley M, Bevan M (2003) Reduced cellulose synthesis invokes lignification and defense responses in Arabidopsis thaliana. Plant J 34:351–362

  7. Chabannes M, Barakate A, Lapierre C, Marita JM, Ralph J, Pean M, Danoun S, Halpin C, Grima-Pettenati J, Boudet AM (2001) Strong decrease in lignin content without significant alteration of plant development is induced by simultaneous down-regulation of cinnamoyl CoA reductase (CCR) and cinnamyl alcohol dehydrogenase (CAD) in tobacco plants. Plant J 28:257–270

  8. Chapple CC, Vogt T, Ellis BE, Somerville CR (1992) An Arabidopsis mutant defective in the general phenylpropanoid pathway. Plant Cell 4:1413–1424

  9. Dauwe R, Morreel K, Goeminne G, Gielen B, Rohde A, Van Beeumen J, Ralph J, Boudet A-M, Kopka J, Rochange SF, Halpin C, Messens E, Boerjan W (2007) Molecular phenotyping of lignin-modified tobacco reveals associated changes in cell-wall metabolism, primary metabolism, stress metabolism and photorespiration. Plant J 52(2):263–285

  10. Dence CW (1992) The determination of lignin. In: Dence C, Lin S (eds) Methods in lignin chemistry. Springer, Heidelberg, pp 33–61

  11. Do C-T, Pollet B, Thévenin J, Sibout R, Denoue D, Barrière Y, Lapierre C, Jouanin L (2007) Both caffeoyl coenzyme A 3-O-methyltransferase 1 and caffeic acid O-methyltransferase 1 are involved in redundant functions for lignin, flavonoids and sinapoyl malate biosynthesis in Arabidopsis. Planta 226:1117–1129

  12. Estelle MA, Somerville C (1987) Auxin-resistant mutants of Arabidopsis thaliana with an altered morphology. Mol Gen Genet 206:200–206

  13. Eudes A, Pollet B, Sibout R, Do C-T, Séguin A, Lapierre C, Jouanin L (2006) Evidence for a role of AtCAD 1 in lignification of elongating stems of Arabidopsis thaliana. Planta 225:23–39

  14. Franke R, Hemm MR, Denault JW, Ruegger MO, Humphreys JM, Chapple C (2002) Changes in secondary metabolism and deposition of an unusual lignin in the ref8 mutant of Arabidopsis. Plant J 30:47–59

  15. Fukushima RS, Hatfield RD (2001) Extraction and isolation of lignin for utilization as a standard to determine lignin concentration using the acetyl bromide spectrophotometric method. J Agric Food Chem 49:3133–3139

  16. Goujon T, Ferret V, Mila I, Pollet B, Ruel K, Burlat V, Joseleau JP, Barriere Y, Lapierre C, Jouanin L (2003a) Down-regulation of the AtCCR1 gene in Arabidopsis thaliana: effects on phenotype, lignins and cell wall degradability. Planta 217:218–228

  17. Goujon T, Sibout R, Eudes A, MacKay J, Jouanin L (2003b) Genes involved in the biosynthesis of lignin precursors in Arabidopsis thaliana. Plant Physiol Biochem 41:677–687

  18. Goujon T, Sibout R, Pollet B, Maba B, Nussaume L, Bechtold N, Lu FC, Ralph J, Mila I, Barriere Y, Lapierre C, Jouanin L (2003c) A new Arabidopsis thaliana mutant deficient in the expression of O-methyltransferase impacts lignins and sinapoyl esters. Plant Mol Biol 51:973–989

  19. Grawe W, Bachhuber P, Mock HP, Strack D (1992) Purification and characterization of sinapoylglucose:malate sinapoyltransferase from Raphanus sativus L. Planta 187:236–241

  20. Hatfield R, Fukushima RS (2005) Can lignin be accurately measured? Crop Sci 45:832–839

  21. Hatfield RD, Grabber J, Ralph J, Brei K (1999) Using the acetyl bromide assay to determine lignin concentrations in herbaceous plants: some cautionary notes. J Agric Food Chem 47:628–632

  22. Hemm MR, Ruegger MO, Chapple C (2003) The Arabidopsis ref2 mutant is defective in the gene encoding CYP83A1 and shows both phenylpropanoid and glucosinolate phenotypes. Plant Cell 15:179–194

  23. Hendrawati O, Qingqiang Y, Kim HK, Linthorst HJM, Erkelens C, Lefeber AWM, Choi YH, Verpoorte R (2006) Metabolic differentiation of Arabidopsis treated with methyl jasmonate using nuclear magnetic spectroscopy. Plant Sci 170: 1118–1124

  24. Hoffmann L, Maury S, Martz F, Geoffroy P, Legrand M (2003) Purification, cloning and properties of an acyltransferase controlling shikimate and quinate ester intermediates in phenylpropanoid metabolism. J Biol Chem 278:95–103

  25. Jacquet G, Pollet B, Lapierre C, Mhamdi F, Rolando C (1995) New ether-linked ferulic acid-coniferyl alcohol dimers identified in grass straws. J Agric Food Chem 43:2746–2751

  26. Jones L, Ennos AR, Turner SR (2001) Cloning and characterization of irregular xylem4 (irx4): a severely lignin-deficient mutant of Arabidopsis. Plant J 26:205–216

  27. Lacombe E, Hawkins S, Van Doorsselaere J, Piquemal J, Goffner D, Poeydomenge O, Boudet AM, Grima-Pettenati J (1997) Cinnamoyl CoA reductase, the first committed enzyme of the lignin branch biosynthetic pathway: cloning, expression and phylogenetic relationships. Plant J 11:429–441

  28. Landry LG, Chapple CC, Last RL (1995) Arabidopsis mutants lacking phenolic sunscreens exhibit enhanced ultraviolet-B injury and oxidative damage. Plant Physiol 109:1159–1166

  29. Lapierre C, Rolando C (1988) Thioacidolysis of pre-methylated lignin samples from pine compression and poplar woods. Holzforschung 42:1–4

  30. Lapierre C, Pollet B, Rolando C (1995) New insights into the molecular architecture of hardwood lignins by chemical degradative methods. Res Chem Intermed 21:397–412

  31. Laskar DD, Jourdes M, Patten AM, Helms GL, Davin LB, Lewis NG (2006) The Arabidopsis cinnamoyl CoA reductase irx4 mutant has a delayed but coherent (normal) program of lignification. Plant J 48:674–686

  32. Lauvergeat V, Lacomme C, Lacombe E, Lasserre E, Roby D, Grima-Pettenati J (2001) Two cinnamoyl-CoA reductase (CCR) genes from Arabidopsis thaliana are differentially expressed during development and in response to infection with pathogenic bacteria. Phytochemistry 57:1187–1195

  33. Meyer K, Kohler A, Kauss H (1991) Biosynthesis of ferulic acid esters of plant cell wall polysaccharides in endomembranes from parsley cells. FEBS Lett 290:209–212

  34. Meyer K, Shirley AM, Cusumano JC, Bell-Lelong DA, Chapple C (1998) Lignin monomer composition is determined by the expression of a cytochrome P450-dependent monooxygenase in Arabidopsis. Proc Natl Acad Sci USA 95:6619–6623

  35. Mouille G, Robin S, Lecomte M, Pagant S, Hofte H (2003) Classification and identification of Arabidopsis cell wall mutants using Fourier-transform infrared (FT-IR) microspectroscopy. Plant J 35:393–404

  36. Musha Y, Goring DAI (1974) Klason and acid soluble lignin content of hardwoods. Wood Sci 7:133–134

  37. Nair RB, Bastress KL, Ruegger MO, Denault JW, Chapple C (2004) The Arabidopsis thaliana REDUCED EPIDERMAL FLUORESCENCE1 gene encodes an aldehyde dehydrogenase involved in ferulic acid and sinapic acid biosynthesis. Plant Cell 16:544–554

  38. O’Connell A, Holt K, Piquemal J, Grima-Pettenati J, Boudet A, Pollet B, Lapierre C, Petit-Conil M, Schuch W, Halpin C (2002) Improved paper pulp from plants with suppressed cinnamoyl-CoA reductase or cinnamyl alcohol dehydrogenase. Transg Res 11:495–503

  39. Patten AM, Cardenas CL, Cochrane FC, Laskar DD, Bedgar DL, Davin LB, Lewis NG (2005) Reassessment of effects on lignification and vascular development in the irx4 Arabidopsis mutant. Phytochemistry 66:2092–2107

  40. Piquemal J, Lapierre C, Myton K, O’Connell A, Schuch W, Grima-Pettenati J, Boudet AM (1998) Down-regulation of cinnamoyl-CoA reductase induces significant changes of lignin profiles in transgenic tobacco plants. Plant J 13:71–83

  41. Ralph J, Kim H, Lu F, Grabber J, Leplé J-C, Berrio Sierra J, Mir Derikvand M, Jouanin L, Boerjan W, Lapierre C (2007) Identification of the structure and origin of a thioacidolysis marker compound for ferulic acid incorporation into angiosperms lignins (and a pseudo marker compound for cinnamoyl-CoA reductase deficiency). Plant J. doi:10.1111/j.1365-313X.2007.03345x

  42. Rohde A, Morreel K, Ralph J, Goeminne G, Hostyn V, De Rycke R, Kushnir S, Van Doorsselaere J, Joseleau JP, Vuylsteke M, Van Driessche G, Van Beeumen J, Messens E, Boerjan W (2004) Molecular phenotyping of the pal1 and pal2 mutants of Arabidopsis thaliana reveals far-reaching consequences on phenylpropanoid, amino acid, and carbohydrate metabolism. Plant Cell 16:2749–2771

  43. Robin S, Lecomte M, Höfte H, Mouille G (2003) A procedure for the clustering of cell wall mutants in the model plants Arabidopsis based on Fourier transform infrared (FT-IR) spectrometry. J Appl Stat 30:669–680

  44. Rosso MG, Li Y, Strizhov N, Reis B, Dekker K, Weisshaar B (2003) An Arabidopsis thaliana T-DNA mutagenized population (GABI-Kat) for flanking sequence tag-based reverse genetics. Plant Mol Biol 53:247–259

  45. Samson F, Brunaud V, Duchene S, De Oliveira Y, Caboche M, Lecharny A, Aubourg S (2004) FLAGdb++: a database for the functional analysis of the Arabidopsis genome. Nucleic Acids Res 32:D347–D350

  46. Saulnier L, Thibault J-F (1999) Ferulic acid and diferulic acids as components of sugar-beet pectins and maize bran heteroxylans. J Sci Food Agric 79:396–402

  47. Sene CFB, McCann MC, Wilson RH, Grinter R (1994) Fourier-transform Raman and Fourier-transform infrared spectroscopy (an investigation of five higher plant cell walls and their components). Plant Physiol 106:1623–1631

  48. Sibout R, Eudes A, Mouille G, Pollet B, Lapierre C, Jouanin L, Séguin A (2005) CINNAMYL ALCOHOL DEHYDROGENASE –C and –D are the primary genes involved in lignin biosynthesis in the floral stem of Arabidopsis. Plant Cell 17:2059–2076

  49. van der Rest B, Danoun S, Boudet AM, Rochange SF (2006) Down-regulation of cinnamoyl-CoA reductase in tomato (Solanum lycopersicum L.) induces dramatic changes in soluble phenolic pools. J Exp Bot 57:1399–1411

  50. Wadenbäck J, von Arnold S, Egertsdotter U, Walter MH, Grima-Pettenati J, Goffner D, Gellerstedt G, Gullion T, Clapham D (2007) Lignin biosynthesis in transgenic Norway spruce plants harboring an antisense construct for cinnamoyl CoA reductase (CCR). Trans Res. doi:10.1007/s11248–007-9113-z

Download references


We thank Fréderic Legée (AgroParisTech, UMR 206 Chimie Biologique) and Laurent Cézard (INRA, UMR 206 Chimie Biologique) for running the Klason lignin and the thioacidolysis analyses respectively and Christina Gofron (INRA Versailles) for Arabidopsis cultivation in the greenhouse.

Author information

Correspondence to Lise Jouanin.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Mir Derikvand, M., Sierra, J.B., Ruel, K. et al. Redirection of the phenylpropanoid pathway to feruloyl malate in Arabidopsis mutants deficient for cinnamoyl-CoA reductase 1. Planta 227, 943–956 (2008). https://doi.org/10.1007/s00425-007-0669-x

Download citation


  • Arabidopsis
  • Cinnamoyl-CoA reductase
  • Feruloyl malate
  • Lignin
  • Sinapoyl malate