Advertisement

Afferent innervation of the ischemic kidney contributes to renal dysfunction in renovascular hypertensive rats

Abstract

The ablation of renal nerves, by destroying both the sympathetic and afferent fibers, has been shown to be effective in lowering blood pressure in resistant hypertensive patients. However, experimental studies have reported that the removal of sympathetic fibers may lead to side effects, such as the impairment of compensatory cardiorenal responses during a hemodynamic challenge. In the present study, we evaluated the effects of the selective removal of renal afferent fibers on arterial hypertension, renal sympathetic nerve activity, and renal changes in a model of renovascular hypertension. After 4 weeks of clipping the left renal artery, afferent renal denervation (ARD) was performed by exposing the left renal nerve to a 33 mM capsaicin solution for 15 min. After 2 weeks of ARD, we found reduced MAP (~ 18%) and sympathoexcitation to both the ischemic and contralateral kidneys in the hypertensive group. Moreover, a reduction in reactive oxygen species was observed in the ischemic (76%) and contralateral (27%) kidneys in the 2K1C group. In addition, ARD normalized renal function markers and proteinuria and podocin in the contralateral kidney. Taken altogether, we show that the selective removal of afferent fibers is an effective method to reduce MAP and improve renal changes without compromising the function of renal sympathetic fibers in the 2K1C model. Renal afferent nerves may be a new target in neurogenic hypertension and renal dysfunction.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 199

This is the net price. Taxes to be calculated in checkout.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. 1.

    Oparil S, Acelajado MC, Bakris GL, Berlowitz DR, Cífková R, Dominiczak AF, Grassi G, Jordan J, Poulter NR, Rodgers A, Whelton PK (2018) Hypertension. Nat Rev Dis Primers 4:18014–18021. https://doi.org/10.1038/nrdp.2018.14

  2. 2.

    Campos RR, Oliveira-Sales EB, Nishi EE, Boim MA, Dolnikoff MS, Bergamaschi CT (2011) The role of oxidative stress in renovascular hypertension. Clin Exp Pharmacol Physiol 38:144–152. https://doi.org/10.1111/j.1440-1681.2010.05437.x

  3. 3.

    de Champlain J, Wu R, Girouard H, Karas M, EL Midaoui A, Laplante MA, Wu L (2004) Oxidative stress in hypertension. Clin Exp Hypertens 26:593–601

  4. 4.

    Krum H, Schlaich MP, Sobotka PA, Böhm M, Mahfoud F, Rocha-Singh K, Katholi R, Esler MD (2014) Percutaneous renal denervation in patients with treatment-resistant hypertension: final 3-year report of the Symplicity HTN-1 study. Lancet 383:622–629. https://doi.org/10.1016/S0140-6736(13)62192-3

  5. 5.

    Papademetriou V, Tsioufis C, Doumas M (2014) Renal denervation and Symplicity HTN-3: “Dubium sapientiae initium” (doubt is the beginning of wisdom). Circ Res 115:211–214. https://doi.org/10.1161/CIRCRESAHA.115.304099

  6. 6.

    Esler M, Guo L (2017) The future of renal denervation. Auton Neurosci 204:131–138. https://doi.org/10.1016/j.autneu.2016.08.004

  7. 7.

    DiBona GF, Kopp UC (1997) Neural control of renal function. Physiol Rev 77:75–197

  8. 8.

    Johansson M, Elam M, Rundqvist B, Eisenhofer G, Herlitz H, Lambert G, Friberg P (1999) Increased sympathetic nerve activity in renovascular hypertension. Circulation 99:2537–2542. https://doi.org/10.1161/01.cir.99.19.2537

  9. 9.

    Oliveira-Sales EB, Nishi EE, Carillo BA, Boim MA, Dolnikoff MS, Bergamaschi CT, Campos RR (2009) Oxidative stress in the sympathetic premotor neurons contributes to sympathetic activation in renovascular hypertension. Am J Hypertens 22:484–492. https://doi.org/10.1038/ajh.2009.17

  10. 10.

    Schlaich MP, Esler MD, Fink GD, Osborn JW, Euler DE (2014) Targeting the sympathetic nervous system: critical issues in patient selection, efficacy, and safety of renal denervation. Hypertension 63:426–432. https://doi.org/10.1161/HYPERTENSIONAHA.113.02144

  11. 11.

    Ong J, Kinsman BJ, Sved AF, Rush BM, Tan RJ, Carattino MD, Stocker SD (2019) Renal sensory nerves increase sympathetic nerve activity and blood pressure in 2-kidney 1-clip hypertensive mice. J Neurophysiol 122:358–367. https://doi.org/10.1152/jn.00173.2019

  12. 12.

    Nishi EE, Oliveira-Sales EB, Bergamaschi CT, Oliveira TG, Boim MA, Campos RR (2010) Chronic antioxidant treatment improves arterial renovascular hypertension and oxidative stress markers in the kidney in Wistar rats. Am J Hypertens 23:473–480. https://doi.org/10.1038/ajh.2010.11

  13. 13.

    Veelken R, Vogel EM, Hilgers K, Amann K, Hartner A, Sass G, Neuhuber W, Tiegs G (2008) Autonomic renal denervation ameliorates experimental glomerulonephritis. J Am Soc Nephrol 19:1371–1378. https://doi.org/10.1681/ASN.2007050552

  14. 14.

    Kiuchi MG, Maia GL, de Queiroz Carreira MA, Kiuchi T, Chen S, Andrea BR, Graciano ML, Lugon JR (2013) Effects of renal denervation with a standard irrigated cardiac ablation catheter on blood pressure and renal function in patients with chronic kidney disease and resistant hypertension. Eur Heart J 34:2114–2121. https://doi.org/10.1093/eurheartj/eht200

  15. 15.

    Weir MR (2007) Microalbuminuria and cardiovascular disease. Clin J Am Soc Nephrol 2:581–590. https://doi.org/10.2215/CJN.03190906

  16. 16.

    Mulder J, Hökfelt T, Knuepfer MM, Kopp UC (2013) Renal sensory and sympathetic nerves reinnervate the kidney in a similar time-dependent fashion after renal denervation in rats. Am J Phys Regul Integr Comp Phys 304:R675–R682. https://doi.org/10.1152/ajpregu.00599.2012

  17. 17.

    Foss JD, Wainford RD, Engeland WC, Fink GD, Osborn JW (2015) A novel method of selective ablation of afferent renal nerves by periaxonal application of capsaicin. Am J Phys Regul Integr Comp Phys 308:R112–R122. https://doi.org/10.1152/ajpregu.00427.2014

  18. 18.

    Shimokawa A, Kunitake T, Takasaki M, Kannan H (1998) Differential effects of anesthetics on sympathetic nerve activity and arterial baroreceptor reflex in chronically instrumented rats. J Auton Nerv Syst 72:46–54

  19. 19.

    Iwashita S, Tanida M, Terui N, Ootsuka Y, Shu M, Kang D, Suzuki M (2002) Direct measurement of renal sympathetic nervous activity in high-fat diet-related hypertensive rats. Life Sci 71:537–546. https://doi.org/10.1016/s0024-3205(02)01707-1

  20. 20.

    Morgan DA, Anderson EA, Mark AL (1995) Renal sympathetic nerve activity is increased in obese Zucker rats. Hypertension 25:834–838. https://doi.org/10.1161/01.hyp.25.4.834

  21. 21.

    Morgan DA, Despas F, Rahmouni K (2015) Effects of leptin on sympathetic nerve activity in conscious mice. Phys Rep 3. https://doi.org/10.14814/phy2.12554

  22. 22.

    Ramchandra R, Hood SG, Denton DA, Woods RL, McKinley MJ, McAllen RM, May CN (2009) Basis for the preferential activation of cardiac sympathetic nerve activity in heart failure. Proc Natl Acad Sci U S A 106:924–928. https://doi.org/10.1073/pnas.0811929106

  23. 23.

    Wei SG, Felder RB (2002) Forebrain renin-angiotensin system has a tonic excitatory influence on renal sympathetic nerve activity. Am J Physiol Heart Circ Physiol 282:H890–H895. https://doi.org/10.1152/ajpheart.2002.282.3.H890

  24. 24.

    Malpas SC, Ninomiya I (1992) A new approach to analysis of synchronized sympathetic nerve activity. Am J Phys 263:H1311–H1317

  25. 25.

    Malpas SC, Ninomiya I (1992) The amplitude and periodicity of synchronized renal sympathetic nerve discharges in anesthetized cats: differential effect of baroreceptor activity. J Auton Nerv Syst 40:189–198

  26. 26.

    Nishi EE, Lopes NR, Gomes GN, Perry JC, Sato AYS, Naffah-Mazzacoratti MG, Bergamaschi CT, Campos RR (2019) Renal denervation reduces sympathetic overactivation, brain oxidative stress, and renal injury in rats with renovascular hypertension independent of its effects on reducing blood pressure. Hypertens Res 42:628–640. https://doi.org/10.1038/s41440-018-0171-9

  27. 27.

    Katholi RE, Whitlow PL, Winternitz SR, Oparil S (1982) Importance of the renal nerves in established two-kidney, one clip Goldblatt hypertension. Hypertension 4:166–174

  28. 28.

    Singh RR, Sajeesh V, Booth LC, McArdle Z, May CN, Head GA, Moritz KM, Schlaich MP, Denton KM (2017) Catheter-based renal denervation exacerbates blood pressure fall during hemorrhage. J Am Coll Cardiol 69:951–964. https://doi.org/10.1016/j.jacc.2016.12.014

  29. 29.

    Converse RL, Jacobsen TN, Toto RD, Jost CM, Cosentino F, Fouad-Tarazi F, Victor RG (1992) Sympathetic overactivity in patients with chronic renal failure. N Engl J Med 327:1912–1918. https://doi.org/10.1056/NEJM199212313272704

  30. 30.

    Zheng H, Katsurada K, Liu X, Knuepfer MM, Patel KP (2018) Specific afferent renal denervation prevents reduction in neuronal nitric oxide synthase within the paraventricular nucleus in rats with chronic heart failure. Hypertension 72:667–675. https://doi.org/10.1161/HYPERTENSIONAHA.118.11071

  31. 31.

    Banek CT, Gauthier MM, Van Helden DA, Fink GD, Osborn JW (2019) Renal inflammation in DOCA-salt hypertension. Hypertension 73:1079–1086. https://doi.org/10.1161/HYPERTENSIONAHA.119.12762

  32. 32.

    Kim J, Padanilam BJ (2013) Renal nerves drive interstitial fibrogenesis in obstructive nephropathy. J Am Soc Nephrol 24:229–242. https://doi.org/10.1681/ASN.2012070678

  33. 33.

    Silva-Aguiar RP, Bezerra NCF, Lucena MC, Sirtoli GM, Sudo RT, Zapata-Sudo G, Takiya CM, Pinheiro AAS, Dias WB, Caruso-Neves C (2018) O-GlcNAcylation reduces proximal tubule protein reabsorption and promotes proteinuria in spontaneously hypertensive rats. J Biol Chem 293:12749–12758. https://doi.org/10.1074/jbc.RA118.001746

Download references

Author information

Nathalia R. Lopes, Guiomar N. Gomes, Adriana C. Girardi, Fernando N. Nogueira, Ruy R. Campos, Cássia T. Bergamaschi, and Erika E. Nishi contributed to the study conception and design. Material preparation, data collection, and analysis were performed by Nathalia R. Lopes, Maycon I. O. Milanez, Beatriz S. Martins, Amanda C. Veiga, Giovanna R. Ferreira, and Polliane M. Carvalho. The first draft of the manuscript was written by Nathalia R. Lopes and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Correspondence to Erika E. Nishi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lopes, N.R., Milanez, M.I.O., Martins, B.S. et al. Afferent innervation of the ischemic kidney contributes to renal dysfunction in renovascular hypertensive rats. Pflugers Arch - Eur J Physiol (2020). https://doi.org/10.1007/s00424-019-02346-4

Download citation

Keywords

  • Sympathetic nervous system
  • Renovascular hypertension
  • Afferent renal denervation
  • Proteinuria