Fast relaxation and desensitization of angiotensin II contraction in the pulmonary artery via AT1R and Akt-mediated phosphorylation of muscular eNOS

  • Hae Jin Kim
  • Ji Hyun Jang
  • Yin Hua Zhang
  • Hae Young Yoo
  • Sung Joon KimEmail author
Organ physiology
Part of the following topical collections:
  1. Organ Physiology


Angiotensin II (AngII) triggers a transient contraction of pulmonary arteries (PAs) followed by protracted desensitization. Based on the unconventional eNOS expression in PA smooth muscle cells (PASMCs), we hypothesized that activation of smooth muscle eNOS by AngII might be responsible for fast relaxation and tachyphylaxis. Using dual-wire myograph, mechanically endothelium-denuded rat PA [E(−)PA] showed AngII concentration–dependent transient contractions (ΔTAngII, 95% decay within 1 min), which were abolished by losartan (AT1R antagonist). Neither PD123319 (AT2R antagonist) nor A779 (MasR antagonist) affected ΔTAngII. When the vessels were pretreated with L-NAME (NOS inhibitor), ODQ (guanylate cyclase inhibitor), or KT5823 (PKG inhibitor), ΔTAngII of E(−)PA became larger and sustained, whereas nNOS or iNOS inhibitors had no such effect. Immunoblotting of human PASMCs (hPASMCs) also showed eNOS expression, and AngII treatment induced activating phosphorylations of Ser1177 in eNOS and of Ser473 in Akt (Ser/Thr protein kinase B), an upstream signal of eNOS phosphorylation. In addition, L-NAME co-treatment promoted AngII-induced Ser19 phosphorylation of myosin light chain. In hPASMCs, AngII abolished plasma membrane expression of AT1R, and recovery by washout took more than 1 h. Consistent with the data from hPASMCs, the second application of AngII to E(−)PA did not induce contraction, and significant recovery of ΔTAngII required prolonged washout (> 2 h) in the myography study. L-NAME treatment before the second application facilitated recovery of ΔTAngII. Muscular eNOS plays an auto-inhibitory role in ΔTAngII of PAs. The molecular changes investigated in hPASMCs revealed eNOS phosphorylation and internalization of AT1R by AngII. We propose that the rat PA smooth muscle eNOS-induced lusitropy and slow recovery of AT1R from tachyphylaxis might counterbalance the excessive contractile response to AngII, contributing to the distinctive low-pressure pulmonary circulation.


eNOS Angiotensin II AT1R Pulmonary artery Smooth muscle 



We greatly appreciate the experimental contribution by Mr. Rany Vorn (Chung-Ang University College of Nursing) in the wire myography study.

Source of funding

This work was supported by a National Research Foundation of Korea (NRF) grant funded by the Korea government (NRF-2018R1A5A2025964 and NRF-2018R1D1A1B07048998) to S.J.K.


  1. 1.
    Adnot S, Chabrier PE, Brun-Buisson C, Viossat I, Braquet P (1988) Atrial natriuretic factor attenuates the pulmonary pressor response to hypoxia. J Appl Physiol 65:1975–1983. CrossRefGoogle Scholar
  2. 2.
    Barnett SF, Defeo-Jones D, Fu S, Hancock PJ, Haskell KM, Jones RE, Kahana JA, Kral AM, Leander K, Lee LL, Malinowski J, McAvoy EM, Nahas DD, Robinson RG, Huber HE (2005) Identification and characterization of pleckstrin-homology-domain-dependent and isoenzyme-specific Akt inhibitors. Biochem J 385:399–408. CrossRefGoogle Scholar
  3. 3.
    Bkaily G, Sleiman S, Stephan J, Asselin C, Choufani S, Kamal M, Jacques D, Gobeil F Jr, D’Orleans-Juste P (2003) Angiotensin II AT1 receptor internalization, translocation and de novo synthesis modulate cytosolic and nuclear calcium in human vascular smooth muscle cells. Can J Physiol Pharmacol 81:274–287CrossRefGoogle Scholar
  4. 4.
    Boulanger CM, Heymes C, Benessiano J, Geske RS, Levy BI, Vanhoutte PM (1998) Neuronal nitric oxide synthase is expressed in rat vascular smooth muscle cells: activation by angiotensin II in hypertension. Circ Res 83:1271–1278CrossRefGoogle Scholar
  5. 5.
    Buchwalow IB, Podzuweit T, Samoilova VE, Wellner M, Haller H, Grote S, Aleth S, Boecker W, Schmitz W, Neumann J (2004) An in situ evidence for autocrine function of NO in the vasculature. Nitric Oxide 10:203–212. CrossRefGoogle Scholar
  6. 6.
    Cacanyiova S, Dovinova I, Kristek F (2013) The role of oxidative stress in acetylcholine-induced relaxation of endothelium-denuded arteries. J Physiol Pharmacol 64:241–247Google Scholar
  7. 7.
    Chand N, Altura BM (1980) Reactivity and contractility of rat main pulmonary artery to vasoactive agents. J Appl Physiol Respir Environ Exerc Physiol 49:1016–1021. Google Scholar
  8. 8.
    Cooper CJ, Landzberg MJ, Anderson TJ, Charbonneau F, Creager MA, Ganz P, Selwyn AP (1996) Role of nitric oxide in the local regulation of pulmonary vascular resistance in humans. Circulation 93:266–271CrossRefGoogle Scholar
  9. 9.
    Costa ED, Rezende BA, Cortes SF, Lemos VS (2016) Neuronal nitric oxide synthase in vascular physiology and diseases. Front Physiol 7:206. CrossRefGoogle Scholar
  10. 10.
    Cui T, Nakagami H, Iwai M, Takeda Y, Shiuchi T, Tamura K, Daviet L, Horiuchi M (2000) ATRAP, novel AT1 receptor associated protein, enhances internalization of AT1 receptor and inhibits vascular smooth muscle cell growth. Biochem Biophys Res Commun 279:938–941. CrossRefGoogle Scholar
  11. 11.
    de Man FS, Tu L, Handoko ML, Rain S, Ruiter G, Francois C, Schalij I, Dorfmuller P, Simonneau G, Fadel E, Perros F, Boonstra A, Postmus PE, van der Velden J, Vonk-Noordegraaf A, Humbert M, Eddahibi S, Guignabert C (2012) Dysregulated renin-angiotensin-aldosterone system contributes to pulmonary arterial hypertension. Am J Respir Crit Care Med 186:780–789. CrossRefGoogle Scholar
  12. 12.
    Emery CJ, Bee D, Barer GR (1981) Mechanical properties and reactivity of vessels in isolated perfused lungs of chronically hypoxic rats. Clin Sci (Lond) 61:569–580CrossRefGoogle Scholar
  13. 13.
    Fasciolo JC, Binia A (1981) Angiotensin I, II, and II tachyphylaxis in the mesenteric vascular circuit of the rat. Hypertension 3:Ii–166 -170CrossRefGoogle Scholar
  14. 14.
    Feng YH, Ding Y, Ren S, Zhou L, Xu C, Karnik SS (2005) Unconventional homologous internalization of the angiotensin II type-1 receptor induced by G-protein-independent signals. Hypertension 46:419–425. CrossRefGoogle Scholar
  15. 15.
    Fleming I (2010) Molecular mechanisms underlying the activation of eNOS. Pflugers Arch 459:793–806. CrossRefGoogle Scholar
  16. 16.
    Forrester SJ, Booz GW, Sigmund CD, Coffman TM, Kawai T, Rizzo V, Scalia R, Eguchi S (2018) Angiotensin II signal transduction: an update on mechanisms of physiology and pathophysiology. Physiol Rev 98:1627–1738. CrossRefGoogle Scholar
  17. 17.
    Goldenberg NM, Kuebler WM (2015) Endothelial cell regulation of pulmonary vascular tone, inflammation, and coagulation. Compr Physiol 5:531–559. CrossRefGoogle Scholar
  18. 18.
    Goll HM, Nyhan DP, Geller HS, Murray PA (1986) Pulmonary vascular responses to angiotensin II and captopril in conscious dogs. J Appl Physiol 61:1552–1559. CrossRefGoogle Scholar
  19. 19.
    Guo DF, Sun YL, Hamet P, Inagami T (2001) The angiotensin II type 1 receptor and receptor-associated proteins. Cell Res 11:165–180. CrossRefGoogle Scholar
  20. 20.
    Hampl V, Herget J (2000) Role of nitric oxide in the pathogenesis of chronic pulmonary hypertension. Physiol Rev 80:1337–1372. CrossRefGoogle Scholar
  21. 21.
    Han JA, Seo EY, Kim HJ, Park SJ, Yoo HY, Kim JY, Shin DM, Kim JK, Zhang YH, Kim SJ (2013) Hypoxia-augmented constriction of deep femoral artery mediated by inhibition of eNOS in smooth muscle. Am J Phys Cell Physiol 304:C78–C88. CrossRefGoogle Scholar
  22. 22.
    Hayashi H, Hess DT, Zhang R, Sugi K, Gao H, Tan BL, Bowles DE, Milano CA, Jain MK, Koch WJ, Stamler JS (2018) S-Nitrosylation of beta-arrestins biases receptor signaling and confers ligand independence. Mol Cell 70:473–487.e476. CrossRefGoogle Scholar
  23. 23.
    Horiuchi M, Iwanami J, Mogi M (2012) Regulation of angiotensin II receptors beyond the classical pathway. Clin Sci (Lond) 123:193–203. CrossRefGoogle Scholar
  24. 24.
    Huang ZM, Gao E, Fonseca FV, Hayashi H, Shang X, Hoffman NE, Chuprun JK, Tian X, Tilley DG, Madesh M, Lefer DJ, Stamler JS, Koch WJ (2013) Convergence of G protein-coupled receptor and S-nitrosylation signaling determines the outcome to cardiac ischemic injury. Sci Signal 6:ra95. Google Scholar
  25. 25.
    Hunyady L, Catt KJ (2006) Pleiotropic AT1 receptor signaling pathways mediating physiological and pathogenic actions of angiotensin II. Mol Endocrinol 20:953–970. CrossRefGoogle Scholar
  26. 26.
    Hyman AL, Kadowitz PJ (1988) Tone-dependent responses to acetylcholine in the feline pulmonary vascular bed. J Appl Physiol 64:2002–2009. CrossRefGoogle Scholar
  27. 27.
    Kawai T, Forrester SJ, O’Brien S, Baggett A, Rizzo V, Eguchi S (2017) AT1 receptor signaling pathways in the cardiovascular system. Pharmacol Res 125:4–13. CrossRefGoogle Scholar
  28. 28.
    Kaye AD, Nossaman BD, Ibrahim IN, Feng CJ, Kadowitz PJ (1995) Influence of protein kinase C inhibitors on vasoconstrictor responses in the pulmonary vascular bed of cat and rat. Am J Phys 268:L532–L538. Google Scholar
  29. 29.
    Kim J, Ahn S, Ren XR, Whalen EJ, Reiter E, Wei H, Lefkowitz RJ (2005) Functional antagonism of different G protein-coupled receptor kinases for beta-arrestin-mediated angiotensin II receptor signaling. Proc Natl Acad Sci U S A 102:1442–1447. CrossRefGoogle Scholar
  30. 30.
    Kim HJ, Yoo HY, Jang JH, Lin HY, Seo EY, Zhang YH, Kim SJ (2016) Wall stretch and thromboxane A(2) activate NO synthase (eNOS) in pulmonary arterial smooth muscle cells via H2O2 and Akt-dependent phosphorylation. Pflugers Arch 468:705–716. CrossRefGoogle Scholar
  31. 31.
    Kim HJ, Yoo HY, Lin HY, Oh GT, Zhang YH, Kim SJ (2016) Role of muscular eNOS in skeletal arteries: endothelium-independent hypoxic vasoconstriction of the femoral artery is impaired in eNOS-deficient mice. Am J Phys Cell Physiol 311:C508–C517. CrossRefGoogle Scholar
  32. 32.
    Kimura T, Toda N, Noda Y, Okamura T (2001) Mechanisms of relaxation induced by angiotensin II in isolated canine and human uterine arteries. J Cardiovasc Pharmacol 37:585–595CrossRefGoogle Scholar
  33. 33.
    Kumar S, Sud N, Fonseca FV, Hou Y, Black SM (2010) Shear stress stimulates nitric oxide signaling in pulmonary arterial endothelial cells via a reduction in catalase activity: role of protein kinase C delta. Am J Phys Lung Cell Mol Phys 298:L105–L116. Google Scholar
  34. 34.
    Lipworth BJ, Dagg KD (1994) Vasoconstrictor effects of angiotensin II on the pulmonary vascular bed. Chest 105:1360–1364CrossRefGoogle Scholar
  35. 35.
    Logie L, Ruiz-Alcaraz AJ, Keane M, Woods YL, Bain J, Marquez R, Alessi DR, Sutherland C (2007) Characterization of a protein kinase B inhibitor in vitro and in insulin-treated liver cells. Diabetes 56:2218–2227. CrossRefGoogle Scholar
  36. 36.
    Lumb AB, Nunn JF (2005) Nunn’s applied respiratory physiology, 6th edn. Elsevier Butterworth Heinemann, EdinburghGoogle Scholar
  37. 37.
    Mehta PK, Griendling KK (2007) Angiotensin II cell signaling: physiological and pathological effects in the cardiovascular system. Am J Phys Cell Physiol 292:C82–C97. CrossRefGoogle Scholar
  38. 38.
    Mogi M, Iwai M, Horiuchi M (2007) Emerging concepts of regulation of angiotensin II receptors: new players and targets for traditional receptors. Arterioscler Thromb Vasc Biol 27:2532–2539. CrossRefGoogle Scholar
  39. 39.
    Morinelli TA, Walker LP, Velez JC, Ullian ME (2015) Clathrin-dependent internalization of the angiotensin II AT(1)A receptor links receptor internalization to COX-2 protein expression in rat aortic vascular smooth muscle cells. Eur J Pharmacol 748:143–148. CrossRefGoogle Scholar
  40. 40.
    Mutchler SM, Straub AC (2015) Compartmentalized nitric oxide signaling in the resistance vasculature. Nitric Oxide 49:8–15. CrossRefGoogle Scholar
  41. 41.
    Nossaman BD, Feng CJ, Wang J, Kadowitz PJ (1994) Analysis of angiotensins I, II, and III in pulmonary vascular bed of the rat. Am J Phys 266:L389–L396. Google Scholar
  42. 42.
    Park SJ, Yoo HY, Earm YE, Kim SJ, Kim JK, Kim SD (2011) Role of arachidonic acid-derived metabolites in the control of pulmonary arterial pressure and hypoxic pulmonary vasoconstriction in rats. Br J Anaesth 106:31–37. CrossRefGoogle Scholar
  43. 43.
    Rabinovitch M, Mullen M, Rosenberg HC, Maruyama K, O’Brodovich H, Olley PM (1988) Angiotensin II prevents hypoxic pulmonary hypertension and vascular changes in rat. Am J Phys 254:H500–H508. Google Scholar
  44. 44.
    Rudolph AM, Kurland MD, Auld PA, Paul MH (1959) Effects of vasodilator drugs on normal and serotonin-constricted pulmonary vessels of the dog. Am J Phys 197:617–623. CrossRefGoogle Scholar
  45. 45.
    Sai Y, Okamura T, Amakata Y, Toda N (1995) Comparison of responses of canine pulmonary artery and vein to angiotensin II, bradykinin and vasopressin. Eur J Pharmacol 282:235–241CrossRefGoogle Scholar
  46. 46.
    Sasamura H, Hein L, Saruta T, Pratt RE (1997) Evidence for internalization of both type 1 angiotensin receptor subtypes (AT1a, AT1b) by a protein kinase C independent mechanism. Hypertens Res 20:295–300CrossRefGoogle Scholar
  47. 47.
    Su KH, Tsai JY, Kou YR, Chiang AN, Hsiao SH, Wu YL, Hou HH, Pan CC, Shyue SK, Lee TS (2009) Valsartan regulates the interaction of angiotensin II type 1 receptor and endothelial nitric oxide synthase via Src/PI3K/Akt signalling. Cardiovasc Res 82:468–475. CrossRefGoogle Scholar
  48. 48.
    Tamaoki J, Sugimoto F, Tagaya E, Isono K, Chiyotani A, Konno K (1994) Angiotensin II 1 receptor-mediated contraction of pulmonary artery and its modulation by prolylcarboxypeptidase. J Appl Physiol (1985) 76:1439–1444. CrossRefGoogle Scholar
  49. 49.
    Tan LM, Sim MK (2000) Actions of angiotensin peptides on the rabbit pulmonary artery. Life Sci 66:1839–1847CrossRefGoogle Scholar
  50. 50.
    Toda N, Ayajiki K, Okamura T (2007) Interaction of endothelial nitric oxide and angiotensin in the circulation. Pharmacol Rev 59:54–87. CrossRefGoogle Scholar
  51. 51.
    Uncles DR, Daugherty MO, Frank DU, Roos CM, Rich GF (1996) Nitric oxide modulation of pulmonary vascular resistance is red blood cell dependent in isolated rat lungs. Anesth Analg 83:1212–1217CrossRefGoogle Scholar
  52. 52.
    Wilson PS, Khimenko P, Moore TM, Taylor AE (1996) Perfusate viscosity and hematocrit determine pulmonary vascular responsiveness to NO synthase inhibitors. Am J Phys 270:H1757–H1765. Google Scholar
  53. 53.
    Yeh JL, Whitney EG, Lamb S, Brophy CM (1996) Nitric oxide is an autocrine feedback inhibitor of vascular smooth muscle contraction. Surgery 119:104–109CrossRefGoogle Scholar
  54. 54.
    Yoo HY, Kim SJ (2013) Disappearance of hypoxic pulmonary vasoconstriction and o2-sensitive nonselective cationic current in arterial myocytes of rats under ambient hypoxia. Korean J Physiol Pharmacol 17:463–468. CrossRefGoogle Scholar
  55. 55.
    Zhao Y, Brandish PE, Di Valentin M, Schelvis JP, Babcock GT, Marletta MA (2000) Inhibition of soluble guanylate cyclase by ODQ. Biochemistry. 39:10848–10854CrossRefGoogle Scholar
  56. 56.
    Zhao Y, Vanhoutte PM, Leung SW (2015) Vascular nitric oxide: beyond eNOS. J Pharmacol Sci 129:83–94. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of PhysiologySeoul National University College of MedicineSeoulSouth Korea
  2. 2.Department of Biomedical SciencesSeoul National University College of MedicineSeoulSouth Korea
  3. 3.Ischemic/Hypoxic Disease InstituteSeoul National University College of MedicineSeoulSouth Korea
  4. 4.Chung-Ang University Red Cross College of NursingSeoulSouth Korea

Personalised recommendations