Advertisement

Pflügers Archiv - European Journal of Physiology

, Volume 471, Issue 8, pp 1127–1142 | Cite as

Ciliary beating amplitude controlled by intracellular Cl and a high rate of CO2 production in ciliated human nasal epithelial cells

  • Taka-aki Inui
  • Kentaro Murakami
  • Makoto YasudaEmail author
  • Shigeru Hirano
  • Yukiko Ikeuchi
  • Haruka Kogiso
  • Shigekuni Hosogi
  • Toshio Inui
  • Yoshinori Marunaka
  • Takashi NakahariEmail author
Signaling and cell physiology
  • 189 Downloads
Part of the following topical collections:
  1. Signaling and cell physiology

Abstract

The ciliary transport is controlled by two parameters of the ciliary beating, frequency (CBF) and amplitude. In this study, we developed a novel method to measure both CBF and ciliary bend distance (CBD, an index of ciliary beating amplitude) in ciliated human nasal epithelial cells (cHNECs) in primary culture, which are prepared from patients contracting allergic rhinitis and chronic sinusitis. An application of Cl-free NO3 solution or bumetanide (an inhibitor of Na+/K+/2Cl cotransport), which decreases intracellular Cl concentration ([Cl]i), increased CBD, not CBF, at 37 °C; however, it increased both CBD and CBF at 25 °C. Conversely, addition of Cl channel blockers (5-nitro-2-(3-phenylpropylamino) benzoic acid (NPPB) and 4-[[4-Oxo-2-thioxo-3-[3-trifluoromethyl]phenyl]-5-thiazolidinylidene]methyl] benzoic acid (CFTR(inh)-172)), which increase [Cl]i, decreased both CBD and CBF, suggesting that CFTR plays a crucial role for maintaining [Cl]i in these cells. We speculate that Cl modulates activities of the molecular motors regulating both CBD and CBF in cHNECs. Moreover, application of the CO2/HCO3-free solution did not change intracellular pH (pHi), and addition of an inhibitor of carbonic anhydrase (acetazolamide) sustained pHi increase induced by the NH4+ pulse, which transiently increased pHi in the absence of acetazolamide. These results indicate that the cHNEC produces a large amount of CO2, which maintains a constant pHi even under the CO2/HCO3-free condition.

Keywords

Airway Intracellular Cl Intracellular pH NH4+ pulse Ciliated human nasal epithelial cell 

Notes

Acknowledgements

The authors thank Osaka medical College for renting out the video-microscope equipped with a high speed camera. Experiments were carried out in Kyoto Prefectural University of Medicine (2018–2019) and in Ritsumeikan University (2019).

Funding

This work was supported by JSPS KAKENHI to YM (No. JP18H03182), JSPS KAKENHI to MY (No. JP18K09325), and research funding from Saisei Mirai.

References

  1. 1.
    Afzelius BA (2004) Cilia-related diseases. J Pathol 2004:470–477CrossRefGoogle Scholar
  2. 2.
    Angus SP, Edelmann RE, Pennock DG (2001) Targeted gene knockout of inner arm 1 in Tetrahymena thermophila. Eur J Cell Biol 80:486–497CrossRefGoogle Scholar
  3. 3.
    Azbell C, Zhang S, Skinner D, Fortenberry J, Sorscher EJ, Woodwortg BA (2010) Hesperidin stimulates CFTR-mediated chloride secretion and ciliary beat frequency in sinonasal epithelium. Otolaryngol Head Neck Surg 143:397–404.  https://doi.org/10.1016/j.otohns.2010.05.021 CrossRefGoogle Scholar
  4. 4.
    Brokaw CJ (1994) Control of flagellar bending: a new agenda based on dynein diversity. Cell Motil Cytoskeleton 28:199–204CrossRefGoogle Scholar
  5. 5.
    Brokaw CJ, Kamiya R (1987) Bending patterns of Chlamydomonas flagella: IV. Mutants with defects in inner and outer dynein arms indicate differences in dynein arm function. Cell Motil Cytoskeleton 8:68–75CrossRefGoogle Scholar
  6. 6.
    Chen JC, Lo YF, Lin YW, Lin SH, Huang CL, Cheng CJ (2019) WNK4 kinase is a physiological intracellular chloride sensor. Proc Natl Acad Sci U S A 116:4502–4507CrossRefGoogle Scholar
  7. 7.
    Chilvers MA, Rutman A, O’Callaghan C (2003) Ciliary beat pattern is associated with specific ultrastructural defects in primary ciliary dyskinesia. J Allergy Clin Immunol 112:518–524CrossRefGoogle Scholar
  8. 8.
    Delmotte P, Sanderson MJ (2006) Ciliary beat frequency is maintained at a maximal rate in the small airways of mouse lung slices. Am J Respir Cell Mol Biol 35:110–117CrossRefGoogle Scholar
  9. 9.
    Gibbons IR, Rowe AJ (1965) Dynein: a protein with adenosine triohosphatase activity from cilia. Science 149:424–426CrossRefGoogle Scholar
  10. 10.
    Higashijima T, Ferguson KM, Sternweis PC (1987) Regulation of hormone-sensitive GTP-dependent regulatory proteins by chloride. J Biol Chem 262:3597–3602Google Scholar
  11. 11.
    Hirosue S, Senn K, Clement N, Nonnenmacher M, Gigout L, Linden RM, Weber T (2007) Effect of inhibition of dynein function and microtubule-altering drugs on AAV2 transduction. Virology 367:10–18CrossRefGoogle Scholar
  12. 12.
    Hosogi S, Miyazaki H, Nakajima K, Ashihara E, Niisato N, Kusuzaki K, Marunaka Y (2012) An inhibitor of Na+/H+ exchanger (NHE), ethyl-isopropyl amiloride (EIPA), diminishes proliferation of MKN28 human gastric cancer cells by decreasing the cytosolic Cl concentration via DIDS-sensitive pathways. Cell Physiol Biochem 30:1241–1253CrossRefGoogle Scholar
  13. 13.
    Ikeuchi Y, Kogiso H, Tanaka S, Hosogi S, Nakahari T, Marunaka Y (2017) Carbocistein-activated bronchiolar ciliary beating via Cl and pH-mediated pathways in mice. J Physiol Sci 67(Suppl):S137Google Scholar
  14. 14.
    Ikeuchi Y, Kogiso H, Hosogi S, Tanaka S, Shimamoto C, Inui T, Nakahari T, Marunaka Y (2018) Measurement of [Cl]i unaffected by the cell volume change using MQAE-based two-photon microscopy in airway ciliary cells of mice. J Physiol Sci 68:191–199CrossRefGoogle Scholar
  15. 15.
    Ikeuchi Y, Kogiso H, Hosogi S, Tanaka S, Shimamoto C, Matsumura H, Inui T, Nakahari T, Marunaka Y (2018) Carbocisteine stimulated an increase in ciliary bend angle via a decrease in [Cl]i in mouse airway cilia. Pflugers Arch - Eur J Physiol 471:365–380.  https://doi.org/10.1007/s00424-018-2212-2 CrossRefGoogle Scholar
  16. 16.
    Inui T, Yasuda M, Hirano S, Ikeuchi Y, Kogiso H, Inui T, Marunaka Y, Nakahari T (2018) Daizein-stimulated increase in the ciliary beating amplitude via [Cl]i decrease in ciliated human nasal epithelia; cells. Int J Mol Sci 19:3757.  https://doi.org/10.3390/ijms19123754 CrossRefGoogle Scholar
  17. 17.
    Kogiso H, Hosogi S, Ikeuchi Y, Tanaka S, Shimamoto C, Matsumura H, Nakano T, Sano K, Inui T, Marunaka Y, Nakahari T (2017) A low [Ca2+]i-induced enhancement of cAMP-activated ciliary beating by PDE1A inhibition in mouse airway cilia. Pflugers Arch - Eur J Physiol 469:1215–1227CrossRefGoogle Scholar
  18. 18.
    Kogiso H, Hosogi S, Ikeuchi Y, Tanaka S, Inui T, Marunaka Y, Nakahari T (2018a) [Ca2+]i modulation of cAMP-stimulated ciliary beat frequency via PDE1 in airway ciliary cells of mice. Exp Physiol 103:381–390CrossRefGoogle Scholar
  19. 19.
    Kogiso H, Ikeuchi Y, Sumiya M, Hosogi S, Tanaka S, Shimamoto C, Inui T, Marunaka Y, Nakahari T (2018b) Seihai-to (TJ-90)-induced activation of airway ciliary beatings of mice: Ca2+ modulation of cAMP-stimulated ciliary beatings via PDE1. Int J Mol Sci 19(3):658.  https://doi.org/10.3390/ijms19030658 CrossRefGoogle Scholar
  20. 20.
    Komatani-Tamiya, N, Daikoku E, Takemura Y, Shimamoto C, Nakano T, Iwasaki Y, Kohda Y, Matsumura H, Marunaka Y, Nakahari T (2012) Procaterol-stimulated increases in ciliary bend amplitude and ciliary beat frequency in mouse bronchioles. Cell Physiol Biochem 2012 29: 511–522Google Scholar
  21. 21.
    Kuremoto T, Kogiso H, Yasuda M, Inui T, Murakami K, Hirano S, Ikeuchi Y, Hosogi S, Inui T, Marunaka Y, Nakahari T (2018) Spontaneous oscillation of the ciliary beat frequency regulated by release of Ca2+ from intracellular stores in mouse nasal epithelia. Biochem Biophys Res Commun 507:211–216CrossRefGoogle Scholar
  22. 22.
    Lorenzo IM, Liedtke W, Sanderson MJ, Valverde MA (2008) TRPV4 channel participates in receptor-operated calcium entry and ciliary beat frequency regulation in mouse airway epithelial cells. Pro Natl Acad Sci USA 105:12611–12616CrossRefGoogle Scholar
  23. 23.
    Miertzschke M, Koerner C, Spoerner M, Wittinghofer A (2014) Structural insights into the small G-protein Arl13B and implications for Joubert syndrome. Biochem J 457:301–311CrossRefGoogle Scholar
  24. 24.
    Müller L, Brighton LE, Carson JL, Fischer WA, Jaspers I (2013) Culturing of human nasal epithelial cells at the air liquid interface. J Vis Exp 80:e50646.  https://doi.org/10.3791/50646 Google Scholar
  25. 25.
    Neesen J, Kirschner R, Ochs M, Schmiedl A, Habermann B, Muellwe C, Holstein AF, Nuesslein T, Adham I, Engel W (2001) Disruption on an inner arm dynein heavy chain gene results in asthenozoospermia and reduced ciliary beat frequency. Hum Mol Genet 10:1117–1128CrossRefGoogle Scholar
  26. 26.
    Nakajima K, Niisato N, Marunaka Y (2012) Enhancement of tubulin polymerization by Cl-induced blockade of intrinsic GTPase. Biochem Biophys Res Commun 425:225–229CrossRefGoogle Scholar
  27. 27.
    Nakajima K, Marunaka Y (2016) Intracellular chloride ion concentration in differentiating neuronal cell and its role in growing neurite. Biochem Biophys Res Commun 479:338–342CrossRefGoogle Scholar
  28. 28.
    Salathe M (2007) Regulation of mammalian ciliary beating. Annu Rev Physiol 69:401–422CrossRefGoogle Scholar
  29. 29.
    Shpetner HS, Paschal BM, Vallee RB (1988) Characterization of the microtubule-activated ATPase of brain cytoplasmic dynein (MAP 1C). J Cell Biol 107:1001–1009CrossRefGoogle Scholar
  30. 30.
    Shiima-Kinoshita C, Min K-Y, Hanafusa T, Mori H, Nakahari T (2004) β2-adrenergic regulation of ciliary beat frequency in rat bronchiolar epithelium: potentiation by isosmotic cell shrinkage. J Physiol 554:403–416CrossRefGoogle Scholar
  31. 31.
    Shimamoto C, Umegaki E, Katsu K, Kato M, Fijiwara S, Kubota T, Nakahari T (2007) [Cl]i modulation of Ca2+-regulated exocytosis in ACh-stimulated antral mucous cells of Guinea pig. Am J Physiol Gastrointest Liver Physiol 293:G824–G837CrossRefGoogle Scholar
  32. 32.
    Sutto Z, Conner GE, Salathe M (2004) Regulation of human airway ciliary beat frequency by intracellular pH. J Physiol 560:519–532CrossRefGoogle Scholar
  33. 33.
    Terker AS, Zhang C, Erspamer KJ, Gamba G, Yang CL, Ellison DH (2016) Unique chloride-sensing properties of WNK4 permit the distal nephron to modulate potassium homeostasis. Kidney Int 89:127–134CrossRefGoogle Scholar
  34. 34.
    Tohda H, Foskett JK, O'Brodovich H, Marunaka Y (1994) Cl regulation of a Ca2+-activated nonselective cation channel in beta-agonist-treated fetal distal lung epithelium. Am J Phys Cell Phys 266:C104–C109CrossRefGoogle Scholar
  35. 35.
    Tokuda S, Shimamoto C, Yoshida H, Murao H, Kishima G, Ito S, Kubota T, Hanafusa T, Sugimoto T, Niisato N, Marunaka Y, Nakahari T (2007) HCO3 -dependent pHi recovery and overacidification induced by NH4 + pulse in rat lung alveolar type II cells: HCO3 -dependent NH3 excretion from lungs? Pflugers Arch - Eur J Physiol 455:223–239CrossRefGoogle Scholar
  36. 36.
    Treharne KJ, Marshall LJ, Mehta A. A novel chloride-dependent GTP-utilizing protein kinase in plasma membranes from human respiratory epithelium. Am J Physiol 267 (Lung Cell Mol Physiol 11) 267: L592-L601, 1994Google Scholar
  37. 37.
    Wanner A, Salathe M, O'Riordan TG (1996) Mucociliary clearance in the airways. Am J Respir Crit Care Med 154:1868–1902CrossRefGoogle Scholar
  38. 38.
    Wood CR, Hard R, Hennessey TM (2007) Targeted gene disruption of dynein heavy chain 7 of Tetrahymena thermophila results in altred ciliary waveform and reduced swim speed. J Cell Sci 120:3075–3085CrossRefGoogle Scholar
  39. 39.
    Yaghi A, Dolovich MB (2016) Airway epithelial cell cilia and obstructive lung disease. Cells 5(4):40.  https://doi.org/10.3390/cells5040040 CrossRefGoogle Scholar
  40. 40.
    Yasuda M, Niisato N, Miyazaki H, Iwasaki Y, Hama T, Dejima K, Hisa Y, Marunaka Y (2007) Epithelial Na+ channel and ion transport in human nasal polyp and paranasal sinus mucosa. Biochem Biophys Res Commun 362:753–758CrossRefGoogle Scholar
  41. 41.
    Yasuda M, Niisato N, Miyazaki H, Hama T, Dejima K, Hisa Y, Marunaka Y (2007) Epithelial ion transport of human nasal polyp and paranasal sinus mucosa. Am J Respir Cell Mol Biol 36:466–472CrossRefGoogle Scholar
  42. 42.
    Zhang L, Sanderson MJ (2003) The role of cGMP in regulation of rabbit airway ciliary beat frequency. J Physiol 551:765–776CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Taka-aki Inui
    • 1
    • 2
  • Kentaro Murakami
    • 1
    • 2
  • Makoto Yasuda
    • 2
    Email author
  • Shigeru Hirano
    • 2
  • Yukiko Ikeuchi
    • 1
    • 3
  • Haruka Kogiso
    • 1
    • 3
  • Shigekuni Hosogi
    • 1
  • Toshio Inui
    • 3
    • 4
  • Yoshinori Marunaka
    • 1
    • 3
    • 5
  • Takashi Nakahari
    • 3
    Email author
  1. 1.Department of Molecular Cell Physiology, Graduate School of Medical SciencesKyoto Prefectural University of MedineKyotoJapan
  2. 2.Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medical ScienceKyoto Prefectural University of MedicineKyotoJapan
  3. 3.Research Laboratory for Epithelial Physiology, Research Organization of Science and Technology BKCRitsumeikan UniversityKusatsuJapan
  4. 4.Saisei Mirai ClinicsMoriguchiJapan
  5. 5.Research Institute for Clinical PhysiologyKyoto Industrial Health AssociationKyotoJapan

Personalised recommendations