Advertisement

Robustness of the non-neuronal cholinergic system in rat large intestine against luminal challenges

  • Sandra Bader
  • Stefanie Gerbig
  • Bernhard Spengler
  • Andreas Schwiertz
  • Gerhard Breves
  • Martin Diener
Organ physiology
  • 22 Downloads
Part of the following topical collections:
  1. Organ Physiology

Abstract

Acetylcholine and atypical esters of choline such as propionyl- and butyrylcholine are produced by the colonic epithelium and are released when epithelial receptors for short-chain fatty acids (SCFA) are stimulated by propionate. It is assumed that the SCFA used by the choline acetyltransferase (ChAT), the central enzyme for the production of these choline esters, originate from the colonic lumen, where they are synthesized during the bacterial fermentation of carbohydrates. Therefore, it seemed to be of interest to study whether the non-neuronal cholinergic system in the colonic epithelium is affected by maneuvers intended to stimulate or to inhibit colonic fermentation by changing the intestinal microbiota. In two series of experiments, rats were either fed with a high fiber diet (15.5% (w/v) crude fibers in comparison to 4.6% (w/w) in the control diet) or treated orally with the antibiotic vancomycin. High fiber diet induced an unexpected decrease in the luminal concentration of SCFA in the colon, but an increase in the caecum, suggesting an upregulation of colonic SCFA absorption, whereas vancomycin treatment resulted in the expected strong reduction of SCFA concentration in colon and caecum. MALDI MS analysis revealed a decrease in the colonic content of propionylcholine by high fiber diet and by vancomycin. High fiber diet caused a significant downregulation of ChAT expression on protein and mRNA level. Despite a modest increase in tissue conductance during the high fiber diet, main barrier and transport properties of the epithelium such as basal short-circuit current (Isc), the flux of the paracellularly transported marker, fluorescein, or the Isc induced by epithelial acetylcholine release evoked by propionate remained unaltered. These results suggest a remarkable stability of the non-neuronal cholinergic system in colonic epithelium against changes in the luminal environment underlying its biological importance for intestinal homeostasis.

Keywords

Acetylcholine Antibiotics Caecum Colon Epithelium Rat Short-chain fatty acids 

Notes

Acknowledgements

The diligent technical assistance of Mrs. Marion Burmester, Brigitta Buss, Bärbel Schmidt, and Alice Stockinger is a pleasure to acknowledge. Financial support by the Deutsche Forschungsgemeinschaft (DFG) under project Sp314/13-1 is gratefully acknowledged.

References

  1. 1.
    Ahmed S, Macfarlane GT, Fite A, McBain AJ, Gilbert P, Macfarlane S (2007) Mucosa-associated bacterial diversity in relation to human terminal ileum and colonic biopsy samples. Appl Environ Microbiol 73:7435–7442CrossRefGoogle Scholar
  2. 2.
    Andersen CL, Jensen JL, Ørntoft TF (2004) Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res 64:5245–5250CrossRefGoogle Scholar
  3. 3.
    Antuszewicz A, Taciak M, Zebrowska T (2005) The short-chain fatty acid content in the caecal digesta of rats fed diets with various sources of fibre. J Anim Feed Sci 14(Suppl. 1):521–524CrossRefGoogle Scholar
  4. 4.
    Argenzio RA, Southworth M (1974) Sites of organic acid production and absorption in gastrointestinal tract of the pig. Am J Phys 228:454–460Google Scholar
  5. 5.
    Arumugam M, Raes J, Pelletier E, Le Paslier D, Yamada T, Mende DR, Fernandes GR, Ap J, Bruls T, Batto JM, Bertalan M, Borruel N, Casellas F, Fernandez L, Gautier L, Hansen HM, Hayashi T, Kleerebezem M, Kurokawa K, Leclerc M, Levenez F, Manichanh C, Nielsen HB, Nielsen T, Pons N, Poulain J, Qin J, Sicheritz-Ponten T, Tims S, Torrents D, Ugarte E, Zoetendal EG, Wang J, Guarner F, Pedersen O, De Vos WM, Brunak S, Doré J, MetaHIT Consortium, Weissenbach J, Ehrlich S, Bork P (2011) Enterotypes of the human gut microbiota. Nature 473:174–180CrossRefGoogle Scholar
  6. 6.
    Bader S, Diener M (2018) Segmental differences in the non-neuronal cholinergic system in rat caecum. Pflugers Arch - Eur J Physiol 470:669–679CrossRefGoogle Scholar
  7. 7.
    Bader S, Klein J, Diener M (2014) Choline acetyltransferase and organic cation transporters are responsible for synthesis and propionate-induced release of acetylcholine in colon epithelium. Eur J Pharmacol 733:23–33CrossRefGoogle Scholar
  8. 8.
    Bader S, Lottig L, Diener M (2017) Stimulation of Na+-K+-pump currents by epithelial nicotinic receptors in rat colon. Br J Pharmacol 174:880–892CrossRefGoogle Scholar
  9. 9.
    Bender A, Breves G, Stein J, Leonhard-Marek S, Schröder B, Winckler C (2001) Colonic fermentation as affected by antibiotics and acidic pH: application of an in vitro model. Z Gastroenterol 39:911–918CrossRefGoogle Scholar
  10. 10.
    Breves G, Faul K, Schröder B, Holst H, Caspary WF, Stein J (2000) Application of the colon-simulation technique for studying the effects of Saccharomyces boulardii on basic parameters of porcice cecal microbial metabolism disturbed by clindamycin. Digestion 61:193–200CrossRefGoogle Scholar
  11. 11.
    Breves G, Gädeken D (1988) Volumen und Retentionszeit der partikelfreien Flüssigkeit im Dickdarm von wachsenden Schweinen. Landbauforsch Völkenrode 38:349–352Google Scholar
  12. 12.
    Bugaut M (1987) Occurence, absorption and metabolism of short chain fatty acids in the digestive tract of mammals. Comp Biochem Physiol 86B:439–472Google Scholar
  13. 13.
    Cheng KR, Samimi R, Xie GF, Shant J, Drachenberg C, Wade M, Davis RJ, Nomikos G, Raufman JP (2008) Acetylcholine release by human colon cancer cells mediates autocrine stimulation of cell proliferation. Am J Physiol Gastrointest Liver Physiol 295:G591–G597CrossRefGoogle Scholar
  14. 14.
    Clark A, Mach N (2017) The crosstalk between the gut microbiota and mitochondria during exercise. Front Physiol 8:319CrossRefGoogle Scholar
  15. 15.
    Collado MC, Donat E, Ribes-Koninckx C, Calabuig M, Sanz Y (2009) Specific duodenal and faecal bacterial groups associated with paediatric coeliac disease. J Clin Pathol 62:264–269CrossRefGoogle Scholar
  16. 16.
    Duarte AC, Holman DB, Alexander TW, Kiri K, Breves G, Chaves AV (2017) Incubation temperature, but not pequi oil supplementation, affects methane production, and the ruminal microbiota in a rumen simulation technique (Rusitec) system. Front Microbiol 8:1076CrossRefGoogle Scholar
  17. 17.
    Farrell DJ, Johnson KA (1972) Utilization of cellulose by pigs and its effects on caecal function. Anim Sci 14:209–217Google Scholar
  18. 18.
    Karaki S, Kuwahara A (2011) K+ and Cl/HCO3 secretion and free fatty acid receptor 2 (FFA2, GPR43) expression in the guinea pig distal colon. Pflugers Arch - Eur J Physiol 461:141–152CrossRefGoogle Scholar
  19. 19.
    Karasov WH, Douglas AE (2013) Comparative digestive physiology. Compr Physiol 3:741–783PubMedPubMedCentralGoogle Scholar
  20. 20.
    Klapproth H, Reinheimer T, Metzen J, Münch M, Bittinger F, Kirkpatrick CJ, Hohle KD, Schemann M, Racké K, Wessler I (1997) Non-neuronal acetylcholine, a signalling molecule synthezised by surface cells of rat and man. Naunyn Schmiedeberg's Arch Pharmacol 355:515–523CrossRefGoogle Scholar
  21. 21.
    Lesko S, Wessler I, Gäbel G, Petto C, Pfannkuche H (2013) Cholinergic modulation of epithelial integrity in the proximal colon of pigs. Cells Tissues Organs 197:411–420CrossRefGoogle Scholar
  22. 22.
    Mathews AG, Sutton AL, Scheidt AB, Patterson AJ, Kelly DT, Meyerholtz KA (1993) Effect of galactan on selected microbial populations and pH and volatile fatty acids in the ileum of the weanling pig. J Anim Sci 71:1503–1509CrossRefGoogle Scholar
  23. 23.
    Matsuki T, Watanabe K, Fujimoto J, Takada T, Tanaka R (2004) Use of 16S rRNA gene-targeted group-specific primers for real-time PCR analysis of predominant bacteria in human feces. Appl Environ Microbiol 70(Decemeber):7220–7228CrossRefGoogle Scholar
  24. 24.
    Moreno S, Gerbig S, Schulz S, Spengler B, Diener M, Bader S (2016) Epithelial propionyl- and butyrylcholine as novel regulators of colonic ion transport. Br J Pharmacol 173:2766–2779CrossRefGoogle Scholar
  25. 25.
    Natarajan N, Pluznick JL (2014) From microbe to man: the role of microbial short chain fatty acid metabolites in host cell biology. Am J Phys Cell Physiol 307:C979–C985CrossRefGoogle Scholar
  26. 26.
    Pfaffl MW, Horgan GW, Dempfle L (2002) Relative expression software tool (REST©) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Res 30:e36CrossRefGoogle Scholar
  27. 27.
    Poulsen JH, Fischer H, Illek B, Machen TE (1994) Bicarbonate conductance and pH regulatory capability of cystic fibrosis transmembrane conductance regulator. Proc Natl Acad Sci U S A 91:5340–5344CrossRefGoogle Scholar
  28. 28.
    Rooks MG, Garrett WS (2016) Gut microbiota, metabolites and host immunity. Nat Rev Immunol 16:341–352CrossRefGoogle Scholar
  29. 29.
    Rossier J (1977) Acetyl-coenzyme A and coenzyme A analogues. Their effects in rat brain choline acetyltransferase. Biochem J 165:321–326CrossRefGoogle Scholar
  30. 30.
    Schemann M, Sann H, Schaaf C, Mäder M (1993) Identification of cholinergic neurons in enteric nervous system by antibodies against choline acetyltransferase. Am J Phys 265:G1005–G1009Google Scholar
  31. 31.
    Schwiertz A, Taras D, Schäfer K, Beijer S, Bos NA, Donus C, Hardt PD (2010) Microbiota and SCFA in lean and overweight healthy subjects. Obesity 18:190–195CrossRefGoogle Scholar
  32. 32.
    Simpson HL, Campbell BJ (2015) Review article: dietary fibre-microbiota interactions. Aliment Pharmacol Ther 42:158–179CrossRefGoogle Scholar
  33. 33.
    Skillman LC, Evans PN, Strömpl C, Joblin KN (2006) 16S rDNA directed PCR primers and detection of methanogens in the bovine rumen. Lett Appl Microbiol 42:222–228CrossRefGoogle Scholar
  34. 34.
    Sokol H, Seksik P, Furet JP, Firmesse O, Nion-Larmurier I, Beaugerie L, Cosnes J, Corthier G, Marteau P, Doré J (2009) Low counts of Faecalibacterium prausnitzii in colitis microbiota. Inflamm Bowel Dis 15:1183–1189CrossRefGoogle Scholar
  35. 35.
    Tulstrup MVL, Christensen EG, Carvalho V, Linninge C, Ahrné S, Hųjberg O, Licht TR, Bahl MI (2015) Antibiotic treatment affects intestinal permeability and gut microbial composition in Wistar rats dependent on antibiotic class. PLoS One 10:e0144854CrossRefGoogle Scholar
  36. 36.
    Wessler I, Kilbinger H, Bittinger F, Unger R, Kirkpatrick CJ (2003) The non-neuronal cholinergic system in humans: expression, function and pathophysiology. Life Sci 72:2055–2061CrossRefGoogle Scholar
  37. 37.
    Yajima T, Inoue R, Matsumoto M, Yajima M (2011a) Non-neuronal release of ACh plays a key role in secretory response to luminal propionate in rat colon. J Physiol 589:953–962CrossRefGoogle Scholar
  38. 38.
    Yajima T, Inoue R, Yajima M, Tsuruta T, Karaki S, Hira T, Kuwahara A (2011b) The G-protein on cholesterol-rich membrane microdomains mediates mucosal sensing of short-chain fatty acid and secretory response in rat colon. Acta Physiol 203:381–389CrossRefGoogle Scholar
  39. 39.
    Yajima M, Kimura S, Karaki S, Nio-Kobayashi J, Tsuruta T, Kuwahara A, Yajima T, Iwanaga T (2016) Non-neuronal, but atropine-sensitive ileal contractile responses to short-chain fatty acids: age-dependent desensitization and restoration under inflammatory conditions in mice. Phys Rep 4:e12759CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute for Veterinary Physiology and BiochemistryJustus Liebig University GiessenGiessenGermany
  2. 2.Institute of Inorganic and Analytical ChemistryJustus Liebig University GiessenGiessenGermany
  3. 3.MVZ Institute of MicroecologyHerbornGermany
  4. 4.Department of PhysiologyUniversity of Veterinary Medicine Hannover, FoundationHannoverGermany
  5. 5.Institut für Veterinär-Physiologie und –BiochemieJustus-Liebig-Universität GießenGiessenGermany

Personalised recommendations