Advertisement

Coronary arterial vasculature in the pathophysiology of hypertrophic cardiomyopathy

  • Richard J. Marszalek
  • R. John Solaro
  • Beata M. Wolska
Invited Review
  • 171 Downloads

Abstract

Alterations in the coronary vascular system are likely associated with a mismatch between energy demand and energy supply and critical in triggering the cascade of events that leads to symptomatic hypertrophic cardiomyopathy. Targeting the early events, particularly vascular remodeling, may be a key approach to developing effective treatments. Improvement in our understanding of hypertrophic cardiomyopathy began with the results of early biophysical studies, proceeded to genetic analyses pinpointing the mutational origin, and now pertains to imaging of the metabolic and flow-related consequences of such mutations. Microvascular dysfunction has been an ongoing hot topic in the imaging of genetic cardiomyopathies marked by its histologically significant remodeling and has proven to be a powerful asset in determining prognosis for these patients as well as enlightening scientists on a potential pathophysiological cascade that may begin early during the developmental process. Here, we discuss questions that continue to remain on the mechanistic processes leading to microvascular dysfunction, its correlation to the morphological changes in the vessels, and its contribution to disease progression.

Keywords

Hypertrophic cardiomyopathy Microvascular Ischemia Pathogenesis Energetics 

Notes

Acknowledgements

We would also like to thank Jin Lim for illustrating Fig. 1.

Funding information

This study received financial support from the following: NIH NHLBI PO1 HL 62426 (RJS, BMW); RO1 HL128468 (BMW, RJS), and T32 HL139439 (RJM).

References

  1. 1.
    Adhikari AS, Kooiker KB, Sarkar SS, Liu C, Bernstein D, Spudich JA, Ruppel KM (2016) Early-onset hypertrophic cardiomyopathy mutations significantly increase the velocity, force, and actin-activated ATPase activity of human beta-cardiac myosin. Cell Rep 17(11):2857–2864PubMedGoogle Scholar
  2. 2.
    Alders DJC, Groeneveld ABJ, de Kanter FJJ, van Beek JHGM (2004) Myocardial O2 consumption in porcine left ventricle is heterogeneously distributed in parallel to heterogeneous O2 delivery. Am J Physiol Heart Circ Physiol 287:H1353–H1361PubMedGoogle Scholar
  3. 3.
    Alkon J, Friedberg MK, Manlhiot C, Manickaraj AK, Kinnear C, McCrindle BW, Benson LN, Addonizio LJ, Colan SD, Mital S (2012) Genetic variations in hypoxia response genes influence hypertrophic cardiomyopathy phenotype. Pediatr Res 72(6):583–592PubMedGoogle Scholar
  4. 4.
    Allen DG, Orchard CH (1986) Myocardial contractile function during ischemia and hypoxia. Circulation 60(2):153–168Google Scholar
  5. 5.
    Alves ML, Dias FAL, Gaffin RD, Simon JN, Montminy EM, Biesiadecki BJ, Hinken AC, Warren CM, Utter MS, Davis RTR, Sakthivel S, Robbins J, Wieczorek DF, Solaro RJ, Wolska BM (2014) Desensitization of myofilaments to Ca2+ as a therapeutic target for hypertrophic cardiomyopathy with mutations in thin filament proteins. Circ Cardiovasc Genet 7(2):132–143PubMedPubMedCentralGoogle Scholar
  6. 6.
    Andersson UME, Morcos PN, Adler ED (2015) Left ventricular non-compaction: current controversy and new insights. J Genet Syndr Gene Ther 06(01):1–9Google Scholar
  7. 7.
    Angelini A, Melacini P, Barbero F, Thiene G (1999) Evolutionary persistence of spongy myocardium in humans. Circulation 99(18):2475–2475PubMedGoogle Scholar
  8. 8.
    Arts MGJ, Reneman RS, Veenstra PC (1979) A model of the mechanics of the left ventricle. Ann Biomed Eng 7:299–318PubMedGoogle Scholar
  9. 9.
    Ashrafian H, McKenna WJ, Watkins H (2011) Disease pathways and novel therapeutic targets in hypertrophic cardiomyopathy. Circ Res 109(1):86–96PubMedGoogle Scholar
  10. 10.
    Bahl A, Saikia UN, Khullar M (2012) Idiopathic restrictive cardiomyopathy - perspectives from genetics studies. Is it time to redefine these disorders? Cardiogenetics 2(1):4Google Scholar
  11. 11.
    Bakeera N, Jamesd J, Royb S, Wansapuraf J, Shanmukhappah SK, Lorenzi JN, Osinskae H, Backerb K, Hubyd A-C, Shresthab A, Nissa O, Fleckk R, Quinna CT, Taylord MD, Purevjave E, Aronowl BJ, Towbind JA, Malik P (2016) Sickle cell anemia mice develop a unique cardiomyopathy with restrictive physiology. PNAS 113:E5182–E5191Google Scholar
  12. 12.
    Basso C, Thiene G, Corrado D, Buja G, Melacini P, Nava A (2000) Hypertrophic cardiomyopathy and sudden death in the young: pathologic evidence of myocardial ischemia. Hum Pathol 31(8):988–998PubMedGoogle Scholar
  13. 13.
    Biagini E, Ragni L, Ferlito M, Pasquale F, Lofiego C, Leone O, Rocchi G, Perugini E, Zagnoni S, Branzi A, Picchio FM, Rapezzi C (2006) Different types of cardiomyopathy associated with isolated ventricular noncompaction. Am J Cardiol 98(6):821–824PubMedGoogle Scholar
  14. 14.
    Buckberg G, Mahajan A, Saleh S, Hoffman JI, Coghlan C (2008) Structure and function relationships of the helical ventricular myocardial band. J Thorac Cardiovasc Surg 136(3):578–589 589 e571–511PubMedGoogle Scholar
  15. 15.
    Burke A, Mont E, Kutys R, Virmani R (2005) Left ventricular noncompaction: a pathological study of 14 cases. Hum Pathol 36(4):403–411PubMedGoogle Scholar
  16. 16.
    Buus NH, Bottcher M, Jorgensen CG, Christensen KL, Thygesen K, Nielsen TT, Mulvany MJ (2004) Myocardial perfusion during long-term angiotensin-converting enzyme inhibition or beta-blockade in patients with essential hypertension. Hypertension 44(4):465–470PubMedGoogle Scholar
  17. 17.
    Cai CL, Martin JC, Sun Y, Cui L, Wang L, Ouyang K, Yang L, Bu L, Liang X, Zhang X, Stallcup WB, Denton CP, McCulloch A, Chen J, Evans SM (2008) A myocardial lineage derives from Tbx18 epicardial cells. Nature 454(7200):104–108PubMedPubMedCentralGoogle Scholar
  18. 18.
    Camici P, Chiriatti G, Lorenzoni R, Bellina RC, Gistri R, Italiani G, Parodi O, Salvadori PA, Nista N, Papi L, L’Abbate A (1991) Coronary vasodilation is impaired in both hypertrophied and nonhypertrophied myocardium of patients with hypertrophic cardiomyopathy: a study with nitrogen-13 ammonia and positron emission tomography. J Am Coll Cardiol 17(4):879–886PubMedGoogle Scholar
  19. 19.
    Cannon RO, Dilsizian V, O’Gara PT, Udelson JE, Schenke WH, Quyyumi A, Fananapazir L, Bonow RO (1991) Myocardial metabolic, hemodynamic, and electrocardiographic significance of reversible thallium-201 abnormalities in hypertrophic cardiomyopathy. Circulation 83(5):1660–1667PubMedGoogle Scholar
  20. 20.
    Cannon L, Yu ZY, Marciniec T, Waardenberg AJ, Iismaa SE, Nikolova-Krstevski V, Neist E, Ohanian M, Qiu MR, Rainer S, Harvey RP, Feneley MP, Graham RM, Fatkin D (2015) Irreversible triggers for hypertrophic cardiomyopathy are established in the early postnatal period. J Am Coll Cardiol 65(6):560–569PubMedGoogle Scholar
  21. 21.
    Captur G, Ho CY, Schlossarek S, Kerwin J, Mirabel M, Wilson R, Rosmini S, Obianyo C, Reant P, Bassett P, Cook AC, Lindsay S, McKenna WJ, Mills K, Elliott PM, Mohun TJ, Carrier L, Moon JC (2016) The embryological basis of subclinical hypertrophic cardiomyopathy. Sci Rep 6:27714PubMedPubMedCentralGoogle Scholar
  22. 22.
    Captur G, Wilson R, Bennett MF, Luxan G, Nasis A, de la Pompa JL, Moon JC, Mohun TJ (2016) Morphogenesis of myocardial trabeculae in the mouse embryo. J Anat 229(2):314–325PubMedPubMedCentralGoogle Scholar
  23. 23.
    Cecchi F, Olivotto I, Gistri R, Lorenzoni R, Chiriatti G, Camici PG (2003) Coronary microvascular dysfunction and prognosis in hypertrophic cardiomyopathy. NEJM 349(11):1027–1035PubMedGoogle Scholar
  24. 24.
    Chen HI, Sharma B, Akerberg BN, Numi HJ, Kivela R, Saharinen P, Aghajanian H, McKay AS, Bogard PE, Chang AH, Jacobs AH, Epstein JA, Stankunas K, Alitalo K, Red-Horse K (2014) The sinus venosus contributes to coronary vasculature through VEGFC-stimulated angiogenesis. Development 141(23):4500–4512PubMedPubMedCentralGoogle Scholar
  25. 25.
    Chilian WM, Marcus ML (1982) Phasic coronary blood flow velocity in intramural and epicardial coronary arteries. Circ Res 50:775–781PubMedGoogle Scholar
  26. 26.
    Choudhury L, Rosen SD, Patel D, Nihoyannopoulos P, Camici PG (1997) Coronary vasodilator reserve in primary and secondary left ventricular hypertrophy: a study with positron emission tomography. Eur Heart J 18:108–116PubMedGoogle Scholar
  27. 27.
    Crilley JG, Boehm EA, Blair E, Rajagopalan B, Blamire AM, Styles P, McKenna WJ, Östman-Smith I, Clarke K, Watkins H (2003) Hypertrophic cardiomyopathy due to sarcomeric gene mutations is characterized by impaired energy metabolism irrespective of the degree of hypertrophy. J Am Coll Cardiol 41(10):1776–1782PubMedGoogle Scholar
  28. 28.
    Dai Z, Aoki T, Fukumoto Y, Shimokawa H (2012) Coronary perivascular fibrosis is associated with impairment of coronary blood flow in patients with non-ischemic heart failure. J Cardiol 60(5):416–421PubMedGoogle Scholar
  29. 29.
    Dass S, Cochlin LE, Suttie JJ, Holloway CJ, Rider OJ, Carden L, Tyler DJ, Karamitsos TD, Clarke K, Neubauer S, Watkins H (2015) Exacerbation of cardiac energetic impairment during exercise in hypertrophic cardiomyopathy: a potential mechanism for diastolic dysfunction. Eur Heart J 36(24):1547–1554PubMedGoogle Scholar
  30. 30.
    Duncker D, Bache R (2008) Regulation of coronary blood flow during exercise. Physiol Rev 88(3):1009–1086Google Scholar
  31. 31.
    Farrell A, Farrell N, Jourdan H, Cox G (2012) A perspective on the evolution of the coronary circulation in fishes and the transition to terrestrial life. In: Sedmera D, Wang T (eds) Ontogeny and phylogeny of the vertebrate heart. Springer, New York, pp 75–102Google Scholar
  32. 32.
    Feigl EO (1987) The paradox of adrenergic coronary vasoconstriction. Circulation 76(4):737–745Google Scholar
  33. 33.
    Fernlund E, Schlegel TT, Platonov PG, Carlson J, Carlsson M, Liuba P (2015) Peripheral microvascular function is altered in young individuals at risk for hypertrophic cardiomyopathy and correlates with myocardial diastolic function. Am J Physiol Heart Circ Physiol 308(11):H1351–H1358Google Scholar
  34. 34.
    Fernlund E, Gyllenhammar T, Jablonowski R, Carlsson M, Larsson A, Arnlov J, Liuba P (2017) Serum biomarkers of myocardial remodeling and coronary dysfunction in early stages of hypertrophic cardiomyopathy in the young. Pediatr Cardiol 38(4):853–863PubMedPubMedCentralGoogle Scholar
  35. 35.
    Ferrantini C, Belus A, Piroddi N, Scellini B, Tesi C, Poggesi C (2009) Mechanical and energetic consequences of HCM-causing mutations. J Cardiovasc Transl Res 2(4):441–451Google Scholar
  36. 36.
    Finsterer J, Stollberger C, Feichtinger H (2002) Histological appearance of left ventricular hypertrabeculation/noncompaction. Cardiology 98(3):162–164PubMedPubMedCentralGoogle Scholar
  37. 37.
    Fisher SA, Burggren WW (2007) Role of hypoxia in the evolution and development of the cardiovascular system. Antioxid Redox Signal 9(9):1339–1352Google Scholar
  38. 38.
    Freeman K, Lerman I, Kranias EG, Bohlmeyer T, Bristow MR, Lefkowitz RJ, Iaccarino G, Koch WJ, Leinwand LA (2001) Alterations in cardiac adrenergic signaling and calcium cycling differentially affect the progression of cardiomyopathy. J Clin Investig 107(8):967–974Google Scholar
  39. 39.
    Friehs I, Moran AM, Stamm C, Choi YH, Cowan DB, McGowan FX, del Nido PJ (2004) Promoting angiogenesis protects severely hypertrophied hearts from ischemic injury. Ann Thorac Surg 77(6):2004–2010PubMedPubMedCentralGoogle Scholar
  40. 40.
    Friehs I, Barillas R, Vasilyev NV, Roy N, McGowan FX, del Nido PJ (2006) Vascular endothelial growth factor prevents apoptosis and preserves contractile function in hypertrophied infant heart. Circulation 114:I290–I295PubMedPubMedCentralGoogle Scholar
  41. 41.
    Gaffin RD, Pena JR, Alves MS, Dias FA, Chowdhury SA, Heinrich LS, Goldspink PH, Kranias EG, Wieczorek DF, Wolska BM (2011) Long-term rescue of a familial hypertrophic cardiomyopathy caused by a mutation in the thin filament protein, tropomyosin, via modulation of a calcium cycling protein. J Mol Cell Cardiol 51(5):812–820PubMedPubMedCentralGoogle Scholar
  42. 42.
    Germans T, Wilde AA, Dijkmans PA, Chai W, Kamp O, Pinto YM, van Rossum AC (2006) Structural abnormalities of the inferoseptal left ventricular wall detected by cardiac magnetic resonance imaging in carriers of hypertrophic cardiomyopathy mutations. J Cardiovasc Magn Reson 48(12):2518–2523Google Scholar
  43. 43.
    Germans T, Rüssel IK, Götte MJ, Spreeuwenberg MD, Doevendans PA, Pinto YM, van der Geest RJ, van der Velden J, Wilde AA, van Rossum AC (2010) How do hypertrophic cardiomyopathy mutations affect myocardial function in carriers with normal wall thickness? Assessment with cardiovascular magnetic resonance. Journal of Cardiovascular Magnetic Resonance 12(13):1–10Google Scholar
  44. 44.
    Gistri R, Cecchi F, Choudhury L, Montereggi A, Sorace O, Salvadori PA, Camici PG (1994) Effect of verapamil on absolute myocardial blood flow in hypertrophic cardiomyopathy. Am J Cardiol 74:363–368Google Scholar
  45. 45.
    Goligorsky MS (2010) Microvascular rarefaction. Organogenesis 6(1):1–10PubMedPubMedCentralGoogle Scholar
  46. 46.
    Goodwill AG, Dick GM, Kiel AM, Tune JD (2017) Regulation of coronary blood flow. Compr Physiol 7(2):321–382PubMedPubMedCentralGoogle Scholar
  47. 47.
    Goto M, Flynn AE, Doucette JW, Jansen CM, Stork MM, Coggins DL, Muehrcke DD, Husseini WK, Hoffman JI (1991) Cardiac contraction affects deep myocardial vessels predominantly. Am J Physiol Heart Circ Physiol 261(5):H1417–H14129Google Scholar
  48. 48.
    Green EM, Wakimoto H, Anderson RL, Evanchik MJ, Gorham JM, Harrison BC, Henze M, Kawas R, Oslob JD, Rodriguez HM, Song Y, Wan W, Leinwand LA, Spudich JA, McDowell RS, Seidman JG, Seidman CE (2016) A small-molecule inhibitor of sarcomere contractility suppresses hypertrophic cardiomyopathy in mice. Science 351(6273):617–621PubMedPubMedCentralGoogle Scholar
  49. 49.
    Gyllenhammar T, Fernlund E, Jablonowski R, Jogi J, Engblom H, Liuba P, Arheden H, Carlsson M (2014) Young patients with hypertrophic cardiomyopathy, but not subjects at risk, show decreased myocardial perfusion reserve quantified with CMR. Eur Heart J Cardiovasc Imaging 15(12):1350–1357Google Scholar
  50. 50.
    Heineke J, Molkentin JD (2006) Regulation of cardiac hypertrophy by intracellular signalling pathways. Nat Rev Mol Cell Biol 7(8):589–600PubMedGoogle Scholar
  51. 51.
    Hiramatsu O, Goto M, ToyotakaYada, Kimura A, Chiba Y, Tachibana H, Ogasawara Y, Tsujioka K, FumihikoKajiya (1998) In vivo observations of the intramural arterioles and venules in beating canine hearts. J Physiol 509(2):619–628Google Scholar
  52. 52.
    Ho CY (2002) Assessment of diastolic function with Doppler tissue imaging to predict genotype in preclinical hypertrophic cardiomyopathy. Circulation 105(25):2992–2997PubMedGoogle Scholar
  53. 53.
    Ho CY, Carlsen C, Thune JJ, Havndrup O, Bundgaard H, Farrohi F, Rivero J, Cirino AL, Andersen PS, Christiansen M, Maron BJ, Orav EJ, Kober L (2009) Echocardiographic strain imaging to assess early and late consequences of sarcomere mutations in hypertrophic cardiomyopathy. Circ Cardiovasc Genet 2(4):314–321PubMedPubMedCentralGoogle Scholar
  54. 54.
    Ho CY, Lopez B, Coelho-Filho OR, Lakdawala NK, Cirino AL, Jarolim P, Kwong R, Gonzalez A, Colan SD, Seidman JG, Diez J, Seidman CE (2010) Myocardial fibrosis as an early manifestation of hypertrophic cardiomyopathy. N Engl J Med 363(6):552–563PubMedPubMedCentralGoogle Scholar
  55. 55.
    Ho JE, Shi L, Day SM, Colan SD, Russell MW, Towbin JA, Sherrid MV, Canter CE, Jefferies JL, Murphy A, Taylor M, Mestroni L, Cirino AL, Sleeper LA, Jarolim P, Lopez B, Gonzalez A, Diez J, Orav EJ, Ho CY (2017) Biomarkers of cardiovascular stress and fibrosis in preclinical hypertrophic cardiomyopathy. Open Heart 4:e000615PubMedPubMedCentralGoogle Scholar
  56. 56.
    Hoedemaekers YM, Caliskan K, Majoor-Krakauer D, van de Laar I, Michels M, Witsenburg M, ten Cate FJ, Simoons ML, Dooijes D (2007) Cardiac beta-myosin heavy chain defects in two families with non-compaction cardiomyopathy: linking non-compaction to hypertrophic, restrictive, and dilated cardiomyopathies. Eur Heart J 28(22):2732–2737PubMedPubMedCentralGoogle Scholar
  57. 57.
    Huang W, Liang J, Kazmierczak K, Muthu P, Duggal D, Farman GP, Sorensen L, Pozios I, Abraham TP, Moore JR, Borejdo J, Szczesna-Cordary D (2014) Hypertrophic cardiomyopathy associated Lys104Glu mutation in the myosin regulatory light chain causes diastolic disturbance in mice. J Mol Cell Cardiol 74:318–329PubMedPubMedCentralGoogle Scholar
  58. 58.
    Hudlická O (1982) Growth of capillaries in skeletal and cardiac muscle. Circ Res 50(4):451–461Google Scholar
  59. 59.
    Hughes SE (2004) The pathology of hypertrophic cardiomyopathy. Histopathology 44:412–427Google Scholar
  60. 60.
    Inoue T, Morooka S, Hayashi T, Takayanagi K, Sakai Y, Fujito T, Fujinuma S, Takabatake Y (1991) Global and regional abnormalities of left ventricular diastolic filling in hypertrophic cardiomyopathy. Clin Cardiol 14(7):573–577PubMedGoogle Scholar
  61. 61.
    Jablonowski R, Fernlund E, Aletras AH, Engblom H, Heiberg E, Liuba P, Arheden H, Carlsson M (2015) Regional stress-induced ischemia in non-fibrotic hypertrophied myocardium in young HCM patients. Pediatr Cardiol 36(8):1662–1669PubMedPubMedCentralGoogle Scholar
  62. 62.
    James TN (1977) Small arteries of the heart. Circulation 56(1):2–14Google Scholar
  63. 63.
    Jenni R, Wyss CA, Oechslin EN, Kaufmann PA (2002) Isolated ventricular noncompaction is associated with coronary microcirculatory dysfunction. J Am Coll Cardiol 39(3):450–454PubMedGoogle Scholar
  64. 64.
    Johansson B, Morner S, Waldenstrom A, Stal P (2008) Myocardial capillary supply is limited in hypertrophic cardiomyopathy: a morphological analysis. Int J Cardiol 126(2):252–257PubMedGoogle Scholar
  65. 65.
    Junga G, Kneifel S, Smekal AV, Steinert H, Bauersfeld U (1999) Myocardial ischaemia in children with isolated ventricular non-compaction. Eur Heart J 20:910–916PubMedGoogle Scholar
  66. 66.
    Kakoi H, Inoue T, Morooka S, Hayashi T, Takabatake Y (1996) Relationship between regional abnormality of left ventricular rapid filling and coronary microcirculation disturbance in hypertrophic cardiomyopathy. Clin Cardiol 19:379–383PubMedGoogle Scholar
  67. 67.
    Kauer F, van Dalen BM, Michels M, Schinkel AF, Vletter WB, van Slegtenhorst M, Soliman OI, Geleijnse ML (2017) Delayed and decreased LV untwist and unstrain rate in mutation carriers for hypertrophic cardiomyopathy. Eur Heart J Cardiovasc Imaging 18(4):383–389PubMedGoogle Scholar
  68. 68.
    Kaul S (1986) The interventricular septum in health and disease. Am Heart J 112(3):568–581PubMedGoogle Scholar
  69. 69.
    Kawana M, Sarkar SS, Sutton S, Ruppel KM, Spudich JA (2017) Biophysical properties of human β-cardiac myosin with converter mutations that cause hypertrophic cardiomyopathy. Sci Adv 3:1–10Google Scholar
  70. 70.
    Kholova I, Niessen HW (2005) Amyloid in the cardiovascular system: a review. J Clin Pathol 58(2):125–133PubMedPubMedCentralGoogle Scholar
  71. 71.
    Kim JB, Porreca GJ, Song L, Greenway SC, Gorham JM, Church GM, Seidman CE, Seidman JG (2007) Polony multiplex analysis of gene expression (PMAGE) in mouse hypertrophic cardiomyopathy. Science 316(5830):1482–1484Google Scholar
  72. 72.
    Klaassen S, Probst S, Oechslin E, Gerull B, Krings G, Schuler P, Greutmann M, Hurlimann D, Yegitbasi M, Pons L, Gramlich M, Drenckhahn JD, Heuser A, Berger F, Jenni R, Thierfelder L (2008) Mutations in sarcomere protein genes in left ventricular noncompaction. Circulation 117(22):2893–2901PubMedGoogle Scholar
  73. 73.
    Kocovski L, Fernandes J (2015) A modern pathology approach to hypertrophic cardiomyopathy. Arch Pathol Lab Med 139:413–416PubMedGoogle Scholar
  74. 74.
    Kofflard MJ, Michels M, Krams R, Kliffen M, Geleijnse ML, Cate FJT, Serruys PW (2007) Coronary flow reserve in hypertrophic cardiomyopathy - relation with microvascular dysfunction and pathophysiological characteristics. Neth Hear J 15(6):209–215Google Scholar
  75. 75.
    Kramer CM, Reichek N, Ferrari VA, Theobald T, Dawson J, Axel L (1994) Regional heterogeneity of function in hypertrophic cardiomyopathy. Circulation 90:186–194PubMedGoogle Scholar
  76. 76.
    Kubo T, Baba Y, Hirota T, Tanioka K, Yamasaki N, Yamanaka S, Iiyama T, Kumagai N, Furuno T, Sugiura T, Kitaoka H (2015) Differentiation of infiltrative cardiomyopathy from hypertrophic cardiomyopathy using high-sensitivity cardiac troponin T: a case-control study. BMC Cardiovasc Disord 15:53PubMedPubMedCentralGoogle Scholar
  77. 77.
    Lazzeroni E, Picano E, Morozzi L, Maurizio AR, Palma G, Ceriati R, Iori E, Barilli A (1997) Dipyridamole-induced ischemia as a prognostic marker of future adverse cardiac events in adult patients with hypertrophic cardiomyopathy. Circulation 96(12):4268–4272PubMedGoogle Scholar
  78. 78.
    Le DE, Jayaweera AR, Wei K, Coggins MP, Lindner JR, Kaul S (2004) Changes in myocardial blood volume over a wide range of coronary driving pressures: role of capillaries beyond the autoregulatory range. Heart 90(10):1199–1205PubMedPubMedCentralGoogle Scholar
  79. 79.
    Lim D-S, Lutucuta S, Bachireddy P, Youker K, Evans A, Entman M (2001) Angiotensin II blockade reverses myocardial fibrosis in a transgenic mouse model of human hypertrophic cardiomyopathy. Circulation 103:789–791PubMedPubMedCentralGoogle Scholar
  80. 80.
    Liu D, Hu K, Nordbeck P, Ertl G, Stork S, Weidemann F (2016) Longitudinal strain bull’s eye plot patterns in patients with cardiomyopathy and concentric left ventricular hypertrophy. Eur J Med Res 21(1):21PubMedPubMedCentralGoogle Scholar
  81. 81.
    Maron BJ (2002) Hypertrophic cardiomyopathy: a systematic review. JAMA 287(10):1308–1320PubMedGoogle Scholar
  82. 82.
    Maron BJ, Epstein SE, Roberts WC (1979) Hypertrophic cardiomyopathy and transmural myocardial infarction without significant atherosclerosis of the extramural coronary arteries. Am J Cardiol 43:1086–1102PubMedGoogle Scholar
  83. 83.
    Maron MS, Maron BJ, Harrigan C, Buros J, Gibson CM, Olivotto I, Biller L, Lesser JR, Udelson JE, Manning WJ, Appelbaum E (2009) Hypertrophic cardiomyopathy phenotype revisited after 50 years with cardiovascular magnetic resonance. J Am Coll Cardiol 54(3):220–228PubMedGoogle Scholar
  84. 84.
    Maron MS, Olivotto I, Maron BJ, Prasad SK, Cecchi F, Udelson JE, Camici PG (2009) The case for myocardial ischemia in hypertrophic cardiomyopathy. J Am Coll Cardiol 54(9):866–875PubMedGoogle Scholar
  85. 85.
    Martinez-Naharro A, Treibel TA, Abdel-Gadir A, Bulluck H, Zumbo G, Knight DS, Kotecha T, Francis R, Hutt DF, Rezk T, Rosmini S, Quarta CC, Whelan CJ, Kellman P, Gillmore JD, Moon JC, Hawkins PN, Fontana M (2017) Magnetic resonance in transthyretin cardiac amyloidosis. J Am Coll Cardiol 70(4):466–477PubMedGoogle Scholar
  86. 86.
    McNally E, Dellefave L (2009) Sarcomere mutations in cardiogenesis and ventricular noncompaction. TCM 19(1):17–21PubMedGoogle Scholar
  87. 87.
    Michail M, Davies JE, Cameron JD, Parker KH, Brown AJ (2018) Pathophysiological coronary and microcirculatory flow alterations in aortic stenosis. Nat Rev Cardiol 15(7):420–431PubMedGoogle Scholar
  88. 88.
    Michele DE, Albayya FP, Metzger JM (1999) Thin filament protein dynamics in fully differentiated adult cardiac myocytes: toward a model of sarcomere maintenance. J Cell Biol 145(7):1483–1495PubMedPubMedCentralGoogle Scholar
  89. 89.
    Michels M, Soliman OI, Kofflard MJ, Hoedemaekers YM, Dooijes D, Majoor-Krakauer D, ten Cate FJ (2009) Diastolic abnormalities as the first feature of hypertrophic cardiomyopathy in Dutch myosin-binding protein C founder mutations. JACC Cardiovasc Imaging 2(1):58–64PubMedGoogle Scholar
  90. 90.
    Montano MM, Doughman YQ, Deng H, Chaplin L, Yang J, Wang N, Zhou Q, Ward NL, Watanabe M (2008) Mutation of the HEXIM1 gene results in defects during heart and vascular development partly through downregulation of vascular endothelial growth factor. Circ Res 102(4):415–422PubMedGoogle Scholar
  91. 91.
    Moon J, Cho IJ, Shim CY, Ha J-W, Jang Y, Chung N, Rim S-J (2010) Abnormal myocardial capillary density in apical hypertrophic cardiomyopathy can be assessed by myocardial contrast echocardiography. Circ J 74(10):2166–2172PubMedGoogle Scholar
  92. 92.
    Mundhenke M, Schwartzkopff B, Strauer BE (1997) Structural analysis of arteriolar and myocardial remodelling in the subendocardial region of patients with hypertensive heart disease and hypertrophic cardiomyopathy. Virchows Arch 431:265–273PubMedGoogle Scholar
  93. 93.
    N Watanabe TA, Yamaura Y, Akiyama M, Kaji S, Saito Y, Yoshida K (2003) Intramyocardial coronary flow characteristics in patients with hypertrophic cardiomyopathy: non-invasive assessment by transthoracic Doppler echocardiography. Heart 89:657–658Google Scholar
  94. 94.
    Nag S, Sommese RF, Ujfalusi Z, Combs A, Langer S, Sutton S, Leinwand LA, Geeves MA, Ruppel KM, Spudich JA (2015) Contractility parameters of human β-cardiac myosin with the hypertrophic cardiomyopathy mutation R403Q show loss of motor function. Sci Adv 1:1–16Google Scholar
  95. 95.
    Nakamura M, Sadoshima J (2018) Mechanisms of physiological and pathological cardiac hypertrophy. Nat Rev Cardiol 15:387–407PubMedGoogle Scholar
  96. 96.
    Neben-Wittich MA, Wittich CM, Mueller PS, Larson DR, Gertz MA, Edwards WD (2005) Obstructive intramural coronary amyloidosis and myocardial ischemia are common in primary amyloidosis. Am J Med 118(11):1287PubMedGoogle Scholar
  97. 97.
    Neglia D, Fommei E, Varela-Carver A, Mancini M, Ghione S, Lombardi M, Pisani P, Parker H, D’Amati G, Donato L, Camici PG (2011) Perindopril and indapamide reverse coronary microvascular remodelling and improve flow in arterial hypertension. J Hypertens 29(2):364–372PubMedGoogle Scholar
  98. 98.
    Neumann T, Manger B, Schmid M, Kroegel C, Hansch A, Kaiser WA, Reinhardt D, Wolf G, Hein G, Mall G, Schett G, Zwerina J (2009) Cardiac involvement in Churg-Strauss syndrome: impact of endomyocarditis. Medicine (Baltimore) 88(4):236–243Google Scholar
  99. 99.
    Niss O, Quinn CT, Lane A, Daily J, Khoury PR, Bakeer N, Kimball TR, Towbin JA, Malik P, Taylor MD (2016) Cardiomyopathy with restrictive physiology in sickle cell disease. JACC Cardiovasc Imaging 9(3):243–252PubMedPubMedCentralGoogle Scholar
  100. 100.
    Obregón R (2015) Non compaction of the ventricular myocardium: a logical reasoning J Cardiol Curr Res 2(5)Google Scholar
  101. 101.
    Olivotto I, Cecchi F, Gistri R, Lorenzoni R, Chiriatti G, Girolami F, Torricelli F, Camici PG (2006) Relevance of coronary microvascular flow impairment to long-term remodeling and systolic dysfunction in hypertrophic cardiomyopathy. J Cardiol Curr Resil 47(5):1043–1048Google Scholar
  102. 102.
    Olivotto I, Cecchi F, Poggesi C, Yacoub MH (2009) Developmental origins of hypertrophic cardiomyopathy phenotypes: a unifying hypothesis. Nat Rev Cardiol 6(4):317–321PubMedGoogle Scholar
  103. 103.
    Olivotto I, Girolami F, Sciagra R, Ackerman MJ, Sotgia B, Bos JM, Nistri S, Sgalambro A, Grifoni C, Torricelli F, Camici PG, Cecchi F (2011) Microvascular function is selectively impaired in patients with hypertrophic cardiomyopathy and sarcomere myofilament gene mutations. J Am Coll Cardiol 58(8):839–848PubMedGoogle Scholar
  104. 104.
    Opherk D, Mall G, Zebe H, Schwarz F, Weihe E, Manthey J, Kübler W (1984) Reduction of coronary reserve: a mechanism for angina pectoris in patients with arterial hypertension and normal coronary arteries. Circulation 69(1):1–7PubMedGoogle Scholar
  105. 105.
    Ormerod JO, Frenneaux MP, Sherrid MV (2016) Myocardial energy depletion and dynamic systolic dysfunction in hypertrophic cardiomyopathy. Nat Rev Cardiol 13(11):677–687PubMedGoogle Scholar
  106. 106.
    Ortlepp JR, Vosberg HP, Reith S, Ohme F, Mahon NG, Schröder D, Klues HG, Hanrath P, McKenna WJ (2002) Genetic polymorphisms in the renin-angiotensin-aldosterone system associated with expression of left ventricular hypertrophy in hypertrophic cardiomyopathy: a study of five polymorphic genes in a family with a disease causing mutation in the myosin binding protein C gene. Heart 87:270–275PubMedPubMedCentralGoogle Scholar
  107. 107.
    Pantazis AA, Kohli SK, Elliott PM (2006) Images in cardiology. Hypertrophic cardiomyopathy and left ventricular hypertrabeculation: evidence for an overlapping phenotype. Heart 92(3):349PubMedPubMedCentralGoogle Scholar
  108. 108.
    Patterson AJ, Zhang L (2011) Hypoxia and fetal heart development. Curr Mol Med 10(7):653–666Google Scholar
  109. 109.
    Petersen SE, Jerosch-Herold M, Hudsmith LE, Robson MD, Francis JM, Doll HA, Selvanayagam JB, Neubauer S, Watkins H (2007) Evidence for microvascular dysfunction in hypertrophic cardiomyopathy: new insights from multiparametric magnetic resonance imaging. Circulation 115(18):2418–2425PubMedGoogle Scholar
  110. 110.
    Phillips SA, Guazzi M (2015) The vasculature in cardiovascular diseases: will the vasculature tell us what the future holds? Prog Cardiovasc Dis 57(5):407–408PubMedGoogle Scholar
  111. 111.
    Pradhan RK, Feigl EO, Gorman MW, Brengelmann GL, Beard DA (2016) Open-loop (feed-forward) and feedback control of coronary blood flow during exercise, cardiac pacing, and pressure changes. Am J Physiol Heart Circ Physiol 310(11):H1683–H1694PubMedPubMedCentralGoogle Scholar
  112. 112.
    Pratt FH (1898) The nutrition of the heart through the vessels of Thebesius and the coronary veins. Am J Phys 1:86–103Google Scholar
  113. 113.
    Pries AR, Secomb TW (2005) Control of blood vessel structure: insights from theoretical models. Am J Physiol Heart Circ Physiol 288(3):H1010–H1015PubMedGoogle Scholar
  114. 114.
    Pries AR, Secomb TW (2009) Origins of heterogeneity in tissue perfusion and metabolism. Cardiovasc Res 81(2):328–335PubMedGoogle Scholar
  115. 115.
    Rani B, Kumar A, Bahl A, Sharma R, Prasad R, Khullar M (2017) Renin-angiotensin system gene polymorphisms as potential modifiers of hypertrophic and dilated cardiomyopathy phenotypes. Mol Cell Biochem 427(1–2):1–11PubMedGoogle Scholar
  116. 116.
    Raphael CE, Cooper R, Parker KH, Collinson J, Vassiliou V, Pennell DJ, de Silva R, Hsu LY, Greve AM, Nijjer S, Broyd C, Ali A, Keegan J, Francis DP, Davies JE, Hughes AD, Arai A, Frenneaux M, Stables RH, Di Mario C, Prasad SK (2016) Mechanisms of myocardial ischemia in hypertrophic cardiomyopathy: insights from wave intensity analysis and magnetic resonance. J Am Coll Cardiol 68(15):1651–1660PubMedPubMedCentralGoogle Scholar
  117. 117.
    Rivenes SM, Kearney DL, Smith EOB, Towbin JA, Denfield SW (2000) Sudden death and cardiovascular collapse in children with restrictive cardiomyopathy. Circulation 102:876–882PubMedGoogle Scholar
  118. 118.
    Robbins JL, Jones WS, Duscha BD, Allen JD, Kraus WE, Regensteiner JG, Hiatt WR, Annex BH (2011) Relationship between leg muscle capillary density and peak hyperemic blood flow with endurance capacity in peripheral artery disease. J Appl Physiol 111(1):81–86Google Scholar
  119. 119.
    Robinson P, Liu X, Sparrow A, Patel S, Zhang YH, Casadei B, Watkins H, Redwood C (2018) Hypertrophic cardiomyopathy mutations increase myofilament Ca2+ buffering, alter intracellular Ca2+ handling, and stimulate Ca2+-dependent signaling. J Biol Chem 293(27):10487–10499PubMedPubMedCentralGoogle Scholar
  120. 120.
    Rubattu S, Bozzao C, Pennacchini E, Pagannone E, Musumeci BM, Piane M, Germani A, Savio C, Francia P, Volpe M, Autore C, Chessa L (2016) A next-generation sequencing approach to identify gene mutations in early- and late-onset hypertrophic cardiomyopathy patients of an Italian cohort. Int J Mol Sci 17(8)Google Scholar
  121. 121.
    Rüssel IK, Brouwer WP, Germans T, Knaapen P, Marcus JT, van der Velden J, Götte MJ, van Rossum AC (2011) Increased left ventricular torsion in hypertrophic cardiomyopathy mutation carriers with normal wall thickness. J Cardiovasc Magn Reson 13(3):1–8Google Scholar
  122. 122.
    Schwartzkopff B, Mundhenke M, Strauer BE (1998) Alterations of the architecture of subendocardial arterioles in patients with hypertrophic cardiomyopathy and impaired coronary vasodilator reserve: a possible cause for myocardial ischemia 11This study was supported by Grant SFB 242: Koronare Herzkrankheit: Prävention und Therapie akuter Komplikationen from the Deutsche Forschungsgemeinschaft, Bonn, Germany. J Am Coll Cardiol 31(5):1089–1096PubMedGoogle Scholar
  123. 123.
    Schwinger RHG, Frank KF (2003) Calcium and the failing heart: phospholamban, good guy or bad guy? Sci STKE 180(15)Google Scholar
  124. 124.
    Sedmera D, Pexieder T, Vuillemin M, Thompson RP, Anderson RH (2000) Developmental patterning of the myocardium. Anat Rec 258:319–337PubMedGoogle Scholar
  125. 125.
    Semsarian C, Ingles J, Maron MS, Maron BJ (2015) New perspectives on the prevalence of hypertrophic cardiomyopathy. J Am Coll Cardiol 65(12):1249–1254PubMedGoogle Scholar
  126. 126.
    Sheng JJ, Jin JP (2014) Gene regulation, alternative splicing, and posttranslational modification of troponin subunits in cardiac development and adaptation: a focused review. Front Physiol 5:165PubMedPubMedCentralGoogle Scholar
  127. 127.
    Sherrrid MV, Mahenthiran J, Casteneda V, Fincke R, Gasser M, Barac I, Thayaparan R, Chaudhry FA (2006) Comparison of diastolic septal perforator flow velocities in hypertrophic cardiomyopathy versus hypertensive left ventricular hypertrophy. Am J Cardiol 97(1):106–112PubMedGoogle Scholar
  128. 128.
    Shyu J-J, Cheng C-H, Erlandson RA, Lin J-H, Liu S-K (2002) Ultrastructure of intramural coronary arteries in pigs with hypertrophic cardiomyopathy. Cardiovasc Pathol 11:104–111PubMedGoogle Scholar
  129. 129.
    Solaro RJ (2010) Sarcomere control mechanisms and the dynamics of the cardiac cycle. J Biomed Biotechnol 2010:105648PubMedPubMedCentralGoogle Scholar
  130. 130.
    Song Q, Schmidt AG, Hahn HS, Carr AN, Frank B, Pater L, Gerst M, Young K, Hoit BD, McConnell BK, Haghighi K, Seidman CE, Seidman JG, Dorn GW, Kranias EG (2003) Rescue of cardiomyocyte dysfunction by phospholamban ablation does not prevent ventricular failure in genetic hypertrophy. J Clin Investig 111(6):859–867PubMedGoogle Scholar
  131. 131.
    Sotgia B, Sciagra R, Olivotto I, Casolo G, Rega L, Betti I, Pupi A, Camici PG, Cecchi F (2008) Spatial relationship between coronary microvascular dysfunction and delayed contrast enhancement in patients with hypertrophic cardiomyopathy. J Nucl Med 49(7):1090–1096PubMedGoogle Scholar
  132. 132.
    Sussman MA, HWL NG, Taigen T, Olson EN, Robbins J, Colbert MC, Gualberto A, Wieczorek DF, Molkentin JD (1998) Prevention of cardiac hypertrophy in mice by calcineurin inhibition. Science 281:1690–1693PubMedGoogle Scholar
  133. 133.
    Tanaka M, Fujiwara H, Onodera T, Wu DJ, Matsuda M, Hamashima Y, Kawai C (1987) Quantitative analysis of narrowings of intramyocardial small arteries in normal hearts, hypertensive hearts, and hearts with hypertrophic cardiomyopathy. Circulation 75(6):1130–1139PubMedGoogle Scholar
  134. 134.
    Tibirica E, Souza EG, De Lorenzo A, Oliveira GM (2015) Reduced systemic microvascular density and reactivity in individuals with early onset coronary artery disease. Microvasc Res 97:105–108PubMedGoogle Scholar
  135. 135.
    Timmer SA, Knaapen P (2013) Coronary microvascular function, myocardial metabolism, and energetics in hypertrophic cardiomyopathy: insights from positron emission tomography. Eur Heart J Cardiovasc Imaging 14(2):95–101PubMedGoogle Scholar
  136. 136.
    Tobita T, Nomura S, Fujita T, Morita H, Asano Y, Onoue K, Ito M, Imai Y, Suzuki A, Ko T, Satoh M, Fujita K, Naito AT, Furutani Y, Toko H, Harada M, Amiya E, Hatano M, Takimoto E, Shiga T, Nakanishi T, Sakata Y, Ono M, Saito Y, Takashima S, Hagiwara N, Aburatani H, Komuro I (2018) Genetic basis of cardiomyopathy and the genotypes involved in prognosis and left ventricular reverse remodeling. Sci Rep 8(1):1998PubMedPubMedCentralGoogle Scholar
  137. 137.
    Tsybouleva N, Zhang L, Chen S, Patel R, Lutucuta S, Nemoto S, DeFreitas G, Entman M, Carabello BA, Roberts R, Marian AJ (2004) Aldosterone, through novel signaling proteins, is a fundamental molecular bridge between the genetic defect and the cardiac phenotype of hypertrophic cardiomyopathy. Circulation 109(10):1284–1291PubMedPubMedCentralGoogle Scholar
  138. 138.
    Valente AM, Lakdawala NK, Powell AJ, Evans SP, Cirino AL, Orav EJ, MacRae CA, Colan SD, Ho CY (2013) Comparison of echocardiographic and cardiac magnetic resonance imaging in hypertrophic cardiomyopathy sarcomere mutation carriers without left ventricular hypertrophy. Circ Cardiovasc Genet 6(3):230–237PubMedPubMedCentralGoogle Scholar
  139. 139.
    van Lier MG, Oost E, Spaan JA, van Horssen P, van der Wal AC, vanBavel E, Siebes M, van den Wijngaard JP (2016) Transmural distribution and connectivity of coronary collaterals within the human heart. Cardiovasc Pathol 25(5):405–412PubMedGoogle Scholar
  140. 140.
    Vessieres E, Freidja ML, Loufrani L, Fassot C, Henrion D (2012) Flow (shear stress)-mediated remodeling of resistance arteries in diabetes. Vasc Pharmacol 57(5–6):173–178Google Scholar
  141. 141.
    Vikstrom KL, Factor SM, Leinwand LA (1996) Mice expressing mutant myosin heavy chains are a model for familial hypertrophic cardiomyopathy. Mol Med 2:556–567PubMedPubMedCentralGoogle Scholar
  142. 142.
    Wang L, Bai F, Zhang Q, Song W, Messer A, Kawai M (2018) Development of apical hypertrophic cardiomyopathy with age in a transgenic mouse model carrying the cardiac actin E99K mutation. J Muscle Res Cell MotilGoogle Scholar
  143. 143.
    Wijnker PJM, Sequeira V, Kuster DWD, Velden JV (2018) Hypertrophic cardiomyopathy: a vicious cycle triggered by sarcomere mutations and secondary disease hits. Antioxid Redox SignalGoogle Scholar
  144. 144.
    Witjas-Paalberends ER, Guclu A, Germans T, Knaapen P, Harms HJ, Vermeer AM, Christiaans I, Wilde AA, Dos Remedios C, Lammertsma AA, van Rossum AC, Stienen GJ, van Slegtenhorst M, Schinkel AF, Michels M, Ho CY, Poggesi C, van der Velden J (2014) Gene-specific increase in the energetic cost of contraction in hypertrophic cardiomyopathy caused by thick filament mutations. Cardiovasc Res 103(2):248–257PubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Richard J. Marszalek
    • 1
    • 2
    • 3
  • R. John Solaro
    • 1
    • 2
    • 3
  • Beata M. Wolska
    • 1
    • 4
  1. 1.Department of Physiology and Biophysics and the Center for Cardiovascular ResearchUniversity of Illinois at ChicagoChicagoUSA
  2. 2.College of MedicineUniversity of Illinois at ChicagoChicagoUSA
  3. 3.Department of Physiology and Biophysics (M/C 901), College of MedicineUniversity of Illinois at ChicagoChicagoUSA
  4. 4.Department of Medicine, Division of Cardiology, College of MedicineUniversity of Illinois at ChicagoChicagoUSA

Personalised recommendations