Pflügers Archiv - European Journal of Physiology

, Volume 471, Issue 2, pp 337–345 | Cite as

Resveratrol long-term treatment differentiates INS-1E beta-cell towards improved glucose response and insulin secretion

  • Marina Casimir
  • Gaelle Chaffard
  • Pierre MaechlerEmail author
Molecular and cellular mechanisms of disease
Part of the following topical collections:
  1. Molecular and cellular mechanisms of disease


The clonal INS-1E beta-cell line has proven to be instrumental for numerous studies investigating the mechanisms of glucose-stimulated insulin secretion. The composition of its culture medium has not changed over the years, although some compounds have been recently highlighted for their effects on tissue differentiation. The present study investigated the effects of long-term treatment of INS-1E cells with 1 μM resveratrol on glucose-stimulated insulin secretion, testing an extended glucose dose response. The data demonstrate that chronic exposure to low-dose resveratrol expands the range of the glucose dose response of INS-1E cells beyond 15 mM glucose. We also assessed whether such beneficial effects could be retained after resveratrol withdrawal from the culture medium. This was not the case as INS-1E cells deprived of resveratrol returned to the phenotype of naïve cells, i.e., exhibiting a plateau phase at 15 mM glucose. Of note, although resveratrol has antioxidant properties, it cannot substitute for β-mercaptoethanol normally present in the medium of INS-1E cells as a reducing agent. In conclusion, the addition of resveratrol as a standard component of the culture medium of INS-1E cells improves glucose-stimulated insulin secretion.


Pancreatic beta-cell Insulin secretion Resveratrol INS-1E cells 



The authors thank Thierry Brun and Laurène Vetterli for fruitful discussions and Clarissa Bartley for analysis of AMPK.

Funding information

This work was supported by the State of Geneva and the Swiss National Science Foundation [146984 and 166625 to P.M.].

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

424_2018_2215_MOESM1_ESM.docx (15 kb)
ESM 1 (DOCX 15 kb)


  1. 1.
    Asfari M, Janjic D, Meda P, Li G, Halban PA, Wollheim CB (1992) Establishment of 2-mercaptoethanol-dependent differentiated insulin-secreting cell lines. Endocrinology 130:167–178CrossRefGoogle Scholar
  2. 2.
    Banks AS, Kon N, Knight C, Matsumoto M, Gutierrez-Juarez R, Rossetti L, Gu W, Accili D (2008) SirT1 gain of function increases energy efficiency and prevents diabetes in mice. Cell Metab 8:333–341CrossRefGoogle Scholar
  3. 3.
    Baur JA, Pearson KJ, Price NL, Jamieson HA, Lerin C, Kalra A, Prabhu VV, Allard JS, Lopez-Lluch G, Lewis K, Pistell PJ, Poosala S, Becker KG, Boss O, Gwinn D, Wang M, Ramaswamy S, Fishbein KW, Spencer RG, Lakatta EG, Le Couteur D, Shaw RJ, Navas P, Puigserver P, Ingram DK, de Cabo R, Sinclair DA (2006) Resveratrol improves health and survival of mice on a high-calorie diet. Nature 444:337–342CrossRefGoogle Scholar
  4. 4.
    Benazra M, Lecomte MJ, Colace C, Muller A, Machado C, Pechberty S, Bricout-Neveu E, Grenier-Godard M, Solimena M, Scharfmann R, Czernichow P, Ravassard P (2015) A human beta cell line with drug inducible excision of immortalizing transgenes. Mol Metab 4:916–925CrossRefGoogle Scholar
  5. 5.
    Brun T, Scarcia P, Li N, Gaudet P, Duhamel D, Palmieri F, Maechler P (2013) Changes in mitochondrial carriers exhibit stress-specific signatures in INS-1Ebeta-cells exposed to glucose versus fatty acids. PLoS One 8:e82364CrossRefGoogle Scholar
  6. 6.
    Chan AY, Dolinsky VW, Soltys CL, Viollet B, Baksh S, Light PE, Dyck JR (2008) Resveratrol inhibits cardiac hypertrophy via AMP-activated protein kinase and Akt. J Biol Chem 283:24194–24201CrossRefGoogle Scholar
  7. 7.
    Chen WP, Chi TC, Chuang LM, Su MJ (2007) Resveratrol enhances insulin secretion by blocking K(ATP) and K(V) channels of beta cells. Eur J Pharmacol 568:269–277CrossRefGoogle Scholar
  8. 8.
    Dasgupta B, Milbrandt J (2007) Resveratrol stimulates AMP kinase activity in neurons. Proc Natl Acad Sci U S A 104:7217–7222CrossRefGoogle Scholar
  9. 9.
    Efanov AM, Zaitsev SV, Mest HJ, Raap A, Appelskog IB, Larsson O, Berggren PO, Efendic S (2001) The novel imidazoline compound BL11282 potentiates glucose-induced insulin secretion in pancreatic beta-cells in the absence of modulation of K(ATP) channel activity. Diabetes 50:797–802CrossRefGoogle Scholar
  10. 10.
    Fiori JL, Shin YK, Kim W, Krzysik-Walker SM, Gonzalez-Mariscal I, Carlson OD, Sanghvi M, Moaddel R, Farhang K, Gadkaree SK, Doyle ME, Pearson KJ, Mattison JA, de Cabo R, Egan JM (2013) Resveratrol prevents beta-cell dedifferentiation in nonhuman primates given a high-fat/high-sugar diet. Diabetes 62:3500–3513CrossRefGoogle Scholar
  11. 11.
    Ganjam GK, Dimova EY, Unterman TG, Kietzmann T (2009) FoxO1 and HNF-4 are involved in regulation of hepatic glucokinase gene expression by resveratrol. J Biol Chem 284:30783–30797CrossRefGoogle Scholar
  12. 12.
    Gembal M, Gilon P, Henquin JC (1992) Evidence that glucose can control insulin release independently from its action on ATP-sensitive K+ channels in mouse B cells. J Clin Invest 89:1288–1295CrossRefGoogle Scholar
  13. 13.
    Howitz KT, Bitterman KJ, Cohen HY, Lamming DW, Lavu S, Wood JG, Zipkin RE, Chung P, Kisielewski A, Zhang LL, Scherer B, Sinclair DA (2003) Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan. Nature 425:191–196CrossRefGoogle Scholar
  14. 14.
    Ishihara H, Asano T, Tsukuda K, Katagiri H, Inukai K, Anai M, Kikuchi M, Yazaki Y, Miyazaki JI, Oka Y (1993) Pancreatic beta cell line MIN6 exhibits characteristics of glucose metabolism and glucose-stimulated insulin secretion similar to those of normal islets. Diabetologia 36:1139–1145CrossRefGoogle Scholar
  15. 15.
    Jakab M, Lach S, Bacova Z, Langeluddecke C, Strbak V, Schmidt S, Iglseder E, Paulmichl M, Geibel J, Ritter M (2008) Resveratrol inhibits electrical activity and insulin release from insulinoma cells by block of voltage-gated Ca+ channels and swelling-dependent Cl- currents. Cell Physiol Biochem 22:567–578CrossRefGoogle Scholar
  16. 16.
    Jang M, Cai L, Udeani GO, Slowing KV, Thomas CF, Beecher CW, Fong HH, Farnsworth NR, Kinghorn AD, Mehta RG, Moon RC, Pezzuto JM (1997) Cancer chemopreventive activity of resveratrol, a natural product derived from grapes. Science 275:218–220CrossRefGoogle Scholar
  17. 17.
    Janjic D, Maechler P, Sekine N, Bartley C, Annen AS, Wollheim CB (1999) Free radical modulation of insulin release in INS-1 cells exposed to alloxan. Biochem Pharmacol 57:639–648CrossRefGoogle Scholar
  18. 18.
    Kasuga M (2006) Insulin resistance and pancreatic beta cell failure. J Clin Invest 116:1756–1760CrossRefGoogle Scholar
  19. 19.
    Merglen A, Theander S, Rubi B, Chaffard G, Wollheim CB, Maechler P (2004) Glucose sensitivity and metabolism-secretion coupling studied during two-year continuous culture in INS-1E insulinoma cells. Endocrinology 145:667–678CrossRefGoogle Scholar
  20. 20.
    Miyazaki J, Araki K, Yamato E, Ikegami H, Asano T, Shibasaki Y, Oka Y, Yamamura K (1990) Establishment of a pancreatic beta cell line that retains glucose-inducible insulin secretion: special reference to expression of glucose transporter isoforms. Endocrinology 127:126–132CrossRefGoogle Scholar
  21. 21.
    Odom DT, Zizlsperger N, Gordon DB, Bell GW, Rinaldi NJ, Murray HL, Volkert TL, Schreiber J, Rolfe PA, Gifford DK, Fraenkel E, Bell GI, Young RA (2004) Control of pancreas and liver gene expression by HNF transcription factors. Science 303:1378–1381CrossRefGoogle Scholar
  22. 22.
    Park SJ, Ahmad F, Philp A, Baar K, Williams T, Luo H, Ke H, Rehmann H, Taussig R, Brown AL, Kim MK, Beaven MA, Burgin AB, Manganiello V, Chung JH (2012) Resveratrol ameliorates aging-related metabolic phenotypes by inhibiting cAMP phosphodiesterases. Cell 148:421–433CrossRefGoogle Scholar
  23. 23.
    Praz GA, Halban PA, Wollheim CB, Blondel B, Strauss AJ, Renold AE (1983) Regulation of immunoreactive-insulin release from a rat cell line (RINm5F). Biochem J 210:345–352CrossRefGoogle Scholar
  24. 24.
    Price NL, Gomes AP, Ling AJ, Duarte FV, Martin-Montalvo A, North BJ, Agarwal B, Ye L, Ramadori G, Teodoro JS, Hubbard BP, Varela AT, Davis JG, Varamini B, Hafner A, Moaddel R, Rolo AP, Coppari R, Palmeira CM, de Cabo R, Baur JA, Sinclair DA (2012) dasSIRT1 is required for AMPK activation and the beneficial effects of resveratrol on mitochondrial function. Cell Metab 15:675–690Google Scholar
  25. 25.
    Ravassard P, Hazhouz Y, Pechberty S, Bricout-Neveu E, Armanet M, Czernichow P, Scharfmann R (2011) A genetically engineered human pancreatic beta cell line exhibiting glucose-inducible insulin secretion. J Clin Invest 121:3589–3597CrossRefGoogle Scholar
  26. 26.
    Um JH, Park SJ, Kang H, Yang S, Foretz M, McBurney MW, Kim MK, Viollet B, Chung JH (2010) AMP-activated protein kinase-deficient mice are resistant to the metabolic effects of resveratrol. Diabetes 59:554–563CrossRefGoogle Scholar
  27. 27.
    Vetterli L, Brun T, Giovannoni L, Bosco D, Maechler P (2011) Resveratrol potentiates glucose-stimulated insulin secretion in INS-1E {beta}-cells and human islets through a SIRT1-dependent mechanism. J Biol Chem 286:6049–6060CrossRefGoogle Scholar
  28. 28.
    Vetterli L, Maechler P (2011) Resveratrol-activated SIRT1 in liver and pancreatic beta-cells: a Janus head looking to the same direction of metabolic homeostasis. Aging (Albany NY) 3:444–449CrossRefGoogle Scholar
  29. 29.
    Wang H, Maechler P, Antinozzi PA, Hagenfeldt KA, Wollheim CB (2000) Hepatocyte nuclear factor 4alpha regulates the expression of pancreatic beta -cell genes implicated in glucose metabolism and nutrient-induced insulin secretion. J Biol Chem 275:35953–35959CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Cell Physiology and Metabolism, Faculty of MedicineUniversity of Geneva Medical CentreGeneva 4Switzerland

Personalised recommendations