Advertisement

Inherited cardiomyopathies in veterinary medicine

  • Joshua A. SternEmail author
  • Yu Ueda
Invited Review

Abstract

Comparative and translation medicine is of particular value within the field of inherited cardiomyopathies. Despite massive advances in understanding the functional role of mutations in human cardiomyopathies, these advances have frequently failed to translate into medical discoveries that alter patient care. One potential explanation for this failure lies in the lack of suitable translational models that adequately recapitulate human cardiovascular physiology and disease expression. The vast genetic heterogeneity that complicates human cardiomyopathy research is potentially alleviated through the study of naturally occurring large animal models of disease, where incredibly homogenous populations, like those seen in a single breed of dog or cat, may exist (Kol et al., Sci Transl Med 7:308–321, 2015; Ueda and Stern, Yale J Biol Med 90:433–448, 2017). Veterinary medicine is in a unique position to provide research resources and information that may be readily applied to human disease (Kol et al., Sci Transl Med 7:308–321, 2015). Many inherited cardiomyopathies of humans are phenotypically and genotypically similar in veterinary species and ongoing research holds promise for aiding veterinary and human patients alike (Basso et al., Circulation 109:1180–1185, 2004; Fox et al., Cardiovasc Pathol 23:28–34, 2014; Fox et al., Circulation 102:1863–1870, 2000; Kittleson et al., J Vet Cardiol 17 Suppl 1:S53–73, 2015; Ueda and Stern, Yale J Biol Med 90:433–448, 2017). This article presents the current knowledge of inherited cardiomyopathies in dogs, cats, and non-human primates, with a goal of identifying areas of translational research and future directions.

Keywords

Translational Animal model Genetic Hypertrophic Dilated Arrhythmogenic 

Notes

Author contributions

Joshua Stern was responsible for co-writing, editing, and submitting the manuscript.

Yu Ueda was responsible for co-writing the manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflicts of interest.

References

  1. 1.
    Abbott JA, MacLean HN (2006) Two-dimensional echocardiographic assessment of the feline left atrium. J Vet Intern Med 20:111–119CrossRefGoogle Scholar
  2. 2.
    Basso C, Fox PR, Meurs KM, Towbin JA, Spier AW, Calabrese F, Maron BJ, Thiene G (2004) Arrhythmogenic right ventricular cardiomyopathy causing sudden cardiac death in boxer dogs: a new animal model of human disease. Circulation 109:1180–1185.  https://doi.org/10.1161/01.cir.0000118494.07530.65 CrossRefGoogle Scholar
  3. 3.
    Beier P, Reese S, Holler PJ, Simak J, Tater G, Wess G (2015) The role of hypothyroidism in the etiology and progression of dilated cardiomyopathy in Doberman Pinschers. J Vet Intern Med 29:141–149.  https://doi.org/10.1111/jvim.12476 CrossRefGoogle Scholar
  4. 4.
    Borgarelli M, Tarducci A, Tidholm A, Haggstrom J (2001) Canine idiopathic dilated cardiomyopathy. Part II: pathophysiology and therapy. Vet J (London, England : 1997) 162:182–195.  https://doi.org/10.1053/tvjl.2001.0616 CrossRefGoogle Scholar
  5. 5.
    Borgeat K, Casamian-Sorrosal D, Helps C, Luis Fuentes V, Connolly DJ (2014) Association of the myosin binding protein C3 mutation (MYBPC3 R820W) with cardiac death in a survey of 236 ragdoll cats. J Vet Cardiol 16:73–80.  https://doi.org/10.1016/j.jvc.2014.03.005 CrossRefGoogle Scholar
  6. 6.
    Camacho P, Fan H, Liu Z, He JQ (2016) Small mammalian animal models of heart disease. Am J Cardiovasc Dis 6:70–80Google Scholar
  7. 7.
    Carlos Sampedrano C, Chetboul V, Mary J, Tissier R, Abitbol M, Serres F, Gouni V, Thomas A, Pouchelon JL (2009) Prospective echocardiographic and tissue Doppler imaging screening of a population of Maine Coon cats tested for the A31P mutation in the myosin-binding protein C gene: a specific analysis of the heterozygous status. J Vet Intern Med 23:91–99.  https://doi.org/10.1111/j.1939-1676.2008.0218.x CrossRefGoogle Scholar
  8. 8.
    Cattanach BM, Dukes-McEwan J, Wotton PR, Stephenson HM, Hamilton RM (2015) A pedigree-based genetic appraisal of Boxer ARVC and the role of the Striatin mutation. Vet Rec 176:492.  https://doi.org/10.1136/vr.102821 CrossRefGoogle Scholar
  9. 9.
    Chan RH, Maron BJ, Olivotto I, Pencina MJ, Assenza GE, Haas T, Lesser JR, Gruner C, Crean AM, Rakowski H, Udelson JE, Rowin E, Lombardi M, Cecchi F, Tomberli B, Spirito P, Formisano F, Biagini E, Rapezzi C, De Cecco CN, Autore C, Cook EF, Hong SN, Gibson CM, Manning WJ, Appelbaum E, Maron MS (2014) Prognostic value of quantitative contrast-enhanced cardiovascular magnetic resonance for the evaluation of sudden death risk in patients with hypertrophic cardiomyopathy. Circulation 130:484–495.  https://doi.org/10.1161/CIRCULATIONAHA.113.007094 CrossRefGoogle Scholar
  10. 10.
    Cunningham SM, Sweeney JT, MacGregor J, Barton BA, Rush JE (2018) Clinical features of English Bulldogs with presumed arrhythmogenic right ventricular cardiomyopathy: 31 cases (2001-2013). J Am Anim Hosp Assoc 54:95–102.  https://doi.org/10.5326/jaaha-ms-6550 CrossRefGoogle Scholar
  11. 11.
    Factor SM, Butany J, Sole MJ, Wigle ED, Williams WC, Rojkind M (1991) Pathologic fibrosis and matrix connective tissue in the subaortic myocardium of patients with hypertrophic cardiomyopathy. J Am Coll Cardiol 17:1343–1351CrossRefGoogle Scholar
  12. 12.
    Ferasin L, Sturgess CP, Cannon MJ, Caney SM, Gruffydd-Jones TJ, Wotton PR (2003) Feline idiopathic cardiomyopathy: a retrospective study of 106 cats (1994-2001). J Feline Med Surg 5:151–159.  https://doi.org/10.1016/S1098-612X(02)00133-X CrossRefGoogle Scholar
  13. 13.
    Fox PR, Liu SK, Maron BJ (1995) Echocardiographic assessment of spontaneously occurring feline hypertrophic cardiomyopathy. An animal model of human disease. Circulation 92:2645–2651CrossRefGoogle Scholar
  14. 14.
    Fox PR, Maron BJ, Basso C, Liu SK, Thiene G (2000) Spontaneously occurring arrhythmogenic right ventricular cardiomyopathy in the domestic cat: a new animal model similar to the human disease. Circulation 102:1863–1870CrossRefGoogle Scholar
  15. 15.
    Fox PR, Basso C, Thiene G, Maron BJ (2014) Spontaneously occurring restrictive nonhypertrophied cardiomyopathy in domestic cats: a new animal model of human disease. Cardiovasc Pathol 23:28–34.  https://doi.org/10.1016/j.carpath.2013.08.001 CrossRefGoogle Scholar
  16. 16.
    Gandjbakhch E, Redheuil A, Pousset F, Charron P, Frank R (2018) Clinical diagnosis, imaging, and genetics of arrhythmogenic right ventricular cardiomyopathy/dysplasia: JACC state-of-the-art review. J Am Coll Cardiol 72:784–804.  https://doi.org/10.1016/j.jacc.2018.05.065 CrossRefGoogle Scholar
  17. 17.
    Gersh BJ, Maron BJ, Bonow RO, Dearani JA, Fifer MA, Link MS, Naidu SS, Nishimura RA, Ommen SR, Rakowski H, Seidman CE, Towbin JA, Udelson JE, Yancy CW, American College of Cardiology Foundation/American Heart Association Task Force on Practice G, American Association for Thoracic S, American Society of E, American Society of Nuclear C, Heart Failure Society of A, Heart Rhythm S, Society for Cardiovascular A, Interventions, Society of Thoracic S (2011) 2011 ACCF/AHA guideline for the diagnosis and treatment of hypertrophic cardiomyopathy: executive summary: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. Circulation 124:2761–2796.  https://doi.org/10.1161/CIR.0b013e318223e230 CrossRefGoogle Scholar
  18. 18.
    Godiksen MT, Granstrom S, Koch J, Christiansen M (2011) Hypertrophic cardiomyopathy in young Maine Coon cats caused by the p.A31P cMyBP-C mutation--the clinical significance of having the mutation. Acta Vet Scand 53:7.  https://doi.org/10.1186/1751-0147-53-7 CrossRefGoogle Scholar
  19. 19.
    Gurwitz JH, Magid DJ, Smith DH, Goldberg RJ, McManus DD, Allen LA, Saczynski JS, Thorp ML, Hsu G, Sung SH, Go AS (2013) Contemporary prevalence and correlates of incident heart failure with preserved ejection fraction. Am J Med 126:393–400.  https://doi.org/10.1016/j.amjmed.2012.10.022 CrossRefGoogle Scholar
  20. 20.
    Haertel AJ, Stern JA, Reader JR, Spinner A, Roberts JA, Christe KL (2016) Antemortem screening for left ventricular hypertrophy in rhesus macaques (Macaca mulatta). Comp Med 66:333–342Google Scholar
  21. 21.
    Harris JD, Little CJL, Dennis JM, Patteson MW (2017) Heart rate turbulence after ventricular premature beats in healthy Doberman pinschers and those with dilated cardiomyopathy. J Vet Cardiol 19:421–432.  https://doi.org/10.1016/j.jvc.2017.08.005 CrossRefGoogle Scholar
  22. 22.
    Hensley MT, Tang J, Woodruff K, Defrancesco T, Tou S, Williams CM, Breen M, Meurs K, Keene B, Cheng K (2017) Intracoronary allogeneic cardiosphere-derived stem cells are safe for use in dogs with dilated cardiomyopathy. J Cell Mol Med 21:1503–1512.  https://doi.org/10.1111/jcmm.13077 CrossRefGoogle Scholar
  23. 23.
    Holler PJ, Wess G (2014) Sphericity index and E-point-to-septal-separation (EPSS) to diagnose dilated cardiomyopathy in Doberman Pinschers. J Vet Intern Med 28:123–129.  https://doi.org/10.1111/jvim.12242 CrossRefGoogle Scholar
  24. 24.
    Ingles J, Burns C, Barratt A, Semsarian C (2015) Application of genetic testing in hypertrophic cardiomyopathy for preclinical disease detection. Circ Cardiovasc Genet 8:852–859.  https://doi.org/10.1161/CIRCGENETICS.115.001093 CrossRefGoogle Scholar
  25. 25.
    Kanthaswamy S, Reader R, Tarara R, Oslund K, Allen M, Ng J, Grinberg C, Hyde D, Glenn DG, Lerche N (2014) Large scale pedigree analysis leads to evidence for founder effects of hypertrophic cardiomyopathy in rhesus macaques (Macaca mulatta). J Med Primatol 43:288–291.  https://doi.org/10.1111/jmp.12127 CrossRefGoogle Scholar
  26. 26.
    Kittleson MD, Meurs KM, Harris SP (2015) The genetic basis of hypertrophic cardiomyopathy in cats and humans. J Vet Cardiol 17(Suppl 1):S53–S73.  https://doi.org/10.1016/j.jvc.2015.03.001 CrossRefGoogle Scholar
  27. 27.
    Klues HG, Maron BJ, Dollar AL, Roberts WC (1992) Diversity of structural mitral valve alterations in hypertrophic cardiomyopathy. Circulation 85:1651–1660CrossRefGoogle Scholar
  28. 28.
    Kluser L, Holler PJ, Simak J, Tater G, Smets P, Rugamer D, Kuchenhoff H, Wess G (2016) Predictors of sudden cardiac death in Doberman Pinschers with dilated cardiomyopathy. J Vet Intern Med 30:722–732.  https://doi.org/10.1111/jvim.13941 CrossRefGoogle Scholar
  29. 29.
    Kol A, Arzi B, Athanasiou KA, Farmer DL, Nolta JA, Rebhun RB, Chen X, Griffiths LG, Verstraete FJ, Murphy CJ, Borjesson DL (2015) Companion animals: translational scientist’s new best friends. Sci Transl Med 7:308ps321.  https://doi.org/10.1126/scitranslmed.aaa9116 CrossRefGoogle Scholar
  30. 30.
    Liu SK, Roberts WC, Maron BJ (1993) Comparison of morphologic findings in spontaneously occurring hypertrophic cardiomyopathy in humans, cats and dogs. Am J Cardiol 72:944–951CrossRefGoogle Scholar
  31. 31.
    Lopez-Alvarez J, Fonfara S, Pedro B, Stephenson H, Cripps PJ, Dukes-McEwan J (2011) Assessment of mechanical ventricular synchrony in Doberman Pinschers with dilated cardiomyopathy. J Vet Cardiol 13:183–195.  https://doi.org/10.1016/j.jvc.2011.05.003 CrossRefGoogle Scholar
  32. 32.
    Maass A, Leinwand LA (2000) Animal models of hypertrophic cardiomyopathy. Curr Opin Cardiol 15:189–196CrossRefGoogle Scholar
  33. 33.
    Maron BJ (2003) Sudden death in young athletes. N Engl J Med 349:1064–1075.  https://doi.org/10.1056/NEJMra022783 CrossRefGoogle Scholar
  34. 34.
    Maron BJ, Fox PR (2015) Hypertrophic cardiomyopathy in man and cats. J Vet Cardiol 17(Suppl 1):S6–S9.  https://doi.org/10.1016/j.jvc.2015.03.007 CrossRefGoogle Scholar
  35. 35.
    Maron BJ, Anan TJ, Roberts WC (1981) Quantitative analysis of the distribution of cardiac muscle cell disorganization in the left ventricular wall of patients with hypertrophic cardiomyopathy. Circulation 63:882–894CrossRefGoogle Scholar
  36. 36.
    Maron BJ, Wolfson JK, Epstein SE, Roberts WC (1986) Intramural (“small vessel”) coronary artery disease in hypertrophic cardiomyopathy. J Am Coll Cardiol 8:545–557CrossRefGoogle Scholar
  37. 37.
    Maron BJ, Wolfson JK, Roberts WC (1992) Relation between extent of cardiac muscle cell disorganization and left ventricular wall thickness in hypertrophic cardiomyopathy. Am J Cardiol 70:785–790CrossRefGoogle Scholar
  38. 38.
    Maron BJ, Gardin JM, Flack JM, Gidding SS, Kurosaki TT, Bild DE (1995) Prevalence of hypertrophic cardiomyopathy in a general population of young adults. Echocardiographic analysis of 4111 subjects in the CARDIA Study. Coronary Artery Risk Development in (Young) Adults. Circulation 92:785–789CrossRefGoogle Scholar
  39. 39.
    Maron BJ, Casey SA, Hauser RG, Aeppli DM (2003) Clinical course of hypertrophic cardiomyopathy with survival to advanced age. J Am Coll Cardiol 42:882–888CrossRefGoogle Scholar
  40. 40.
    Maron BJ, Maron MS, Semsarian C (2012) Genetics of hypertrophic cardiomyopathy after 20 years: clinical perspectives. J Am Coll Cardiol 60:705–715.  https://doi.org/10.1016/j.jacc.2012.02.068 CrossRefGoogle Scholar
  41. 41.
    Maron BJ, Rowin EJ, Casey SA, Haas TS, Chan RH, Udelson JE, Garberich RF, Lesser JR, Appelbaum E, Manning WJ, Maron MS (2013) Risk stratification and outcome of patients with hypertrophic cardiomyopathy >=60 years of age. Circulation 127:585–593.  https://doi.org/10.1161/CIRCULATIONAHA.112.136085 CrossRefGoogle Scholar
  42. 42.
    Mausberg TB, Wess G, Simak J, Keller L, Drogemuller M, Drogemuller C, Webster MT, Stephenson H, Dukes-McEwan J, Leeb T (2011) A locus on chromosome 5 is associated with dilated cardiomyopathy in Doberman Pinschers. PLoS One 6:e20042.  https://doi.org/10.1371/journal.pone.0020042 CrossRefGoogle Scholar
  43. 43.
    Messer AE, Chan J, Daley A, Copeland O, Marston SB, Connolly DJ (2017) Investigations into the sarcomeric protein and Ca(2+)-regulation abnormalities underlying hypertrophic cardiomyopathy in cats (Felix catus). Front Physiol 8:348.  https://doi.org/10.3389/fphys.2017.00348 CrossRefGoogle Scholar
  44. 44.
    Meurs KM (2017) Arrhythmogenic right ventricular cardiomyopathy in the boxer dog: an update. Vet Clin North Am Small Anim Pract 47:1103–1111.  https://doi.org/10.1016/j.cvsm.2017.04.007 CrossRefGoogle Scholar
  45. 45.
    Meurs KM, Miller MW, Wright NA (2001) Clinical features of dilated cardiomyopathy in Great Danes and results of a pedigree analysis: 17 cases (1990-2000). J Am Vet Med Assoc 218:729–732CrossRefGoogle Scholar
  46. 46.
    Meurs KM, Sanchez X, David RM, Bowles NE, Towbin JA, Reiser PJ, Kittleson JA, Munro MJ, Dryburgh K, Macdonald KA, Kittleson MD (2005) A cardiac myosin binding protein C mutation in the Maine Coon cat with familial hypertrophic cardiomyopathy. Hum Mol Genet 14:3587–3593.  https://doi.org/10.1093/hmg/ddi386 CrossRefGoogle Scholar
  47. 47.
    Meurs KM, Norgard MM, Ederer MM, Hendrix KP, Kittleson MD (2007) A substitution mutation in the myosin binding protein C gene in ragdoll hypertrophic cardiomyopathy. Genomics 90:261–264.  https://doi.org/10.1016/j.ygeno.2007.04.007 CrossRefGoogle Scholar
  48. 48.
    Meurs KM, Mauceli E, Lahmers S, Acland GM, White SN, Lindblad-Toh K (2010) Genome-wide association identifies a deletion in the 3′ untranslated region of striatin in a canine model of arrhythmogenic right ventricular cardiomyopathy. Hum Genet 128:315–324.  https://doi.org/10.1007/s00439-010-0855-y CrossRefGoogle Scholar
  49. 49.
    Meurs KM, Lahmers S, Keene BW, White SN, Oyama MA, Mauceli E, Lindblad-Toh K (2012) A splice site mutation in a gene encoding for PDK4, a mitochondrial protein, is associated with the development of dilated cardiomyopathy in the Doberman pinscher. Hum Genet 131:1319–1325.  https://doi.org/10.1007/s00439-012-1158-2 CrossRefGoogle Scholar
  50. 50.
    Meurs KM, Stern JA, Sisson DD, Kittleson MD, Cunningham SM, Ames MK, Atkins CE, DeFrancesco T, Hodge TE, Keene BW, Reina Doreste Y, Leuthy M, Motsinger-Reif AA, Tou SP (2013) Association of dilated cardiomyopathy with the striatin mutation genotype in boxer dogs. J Vet Intern Med 27:1437–1440.  https://doi.org/10.1111/jvim.12163 CrossRefGoogle Scholar
  51. 51.
    Meurs KM, Stern JA, Reina-Doreste Y, Spier AW, Koplitz SL, Baumwart RD (2014) Natural history of arrhythmogenic right ventricular cardiomyopathy in the boxer dog: a prospective study. J Vet Intern Med 28:1214–1220.  https://doi.org/10.1111/jvim.12385 CrossRefGoogle Scholar
  52. 52.
    Milani-Nejad N, Janssen PM (2014) Small and large animal models in cardiac contraction research: advantages and disadvantages. Pharmacol Ther 141:235–249.  https://doi.org/10.1016/j.pharmthera.2013.10.007 CrossRefGoogle Scholar
  53. 53.
    O'Grady MR, O'Sullivan ML (2004) Dilated cardiomyopathy: an update. Vet Clin North Am Small Anim Pract 34:1187–1207.  https://doi.org/10.1016/j.cvsm.2004.05.009 CrossRefGoogle Scholar
  54. 54.
    O'Grady MR, O'Sullivan ML, Minors SL, Horne R (2009) Efficacy of benazepril hydrochloride to delay the progression of occult dilated cardiomyopathy in Doberman Pinschers. J Vet Intern Med 23:977–983.  https://doi.org/10.1111/j.1939-1676.2009.0346.x CrossRefGoogle Scholar
  55. 55.
    O'Sullivan ML, O'Grady MR, Pyle WG, Dawson JF (2011) Evaluation of 10 genes encoding cardiac proteins in Doberman Pinschers with dilated cardiomyopathy. Am J Vet Res 72:932–939.  https://doi.org/10.2460/ajvr.72.7.932 CrossRefGoogle Scholar
  56. 56.
    Owan TE, Hodge DO, Herges RM, Jacobsen SJ, Roger VL, Redfield MM (2006) Trends in prevalence and outcome of heart failure with preserved ejection fraction. N Engl J Med 355:251–259.  https://doi.org/10.1056/NEJMoa052256 CrossRefGoogle Scholar
  57. 57.
    Oxford EM, Danko CG, Kornreich BG, Maass K, Hemsley SA, Raskolnikov D, Fox PR, Delmar M, Moise NS (2011) Ultrastructural changes in cardiac myocytes from Boxer dogs with arrhythmogenic right ventricular cardiomyopathy. J Vet Cardiol 13:101–113.  https://doi.org/10.1016/j.jvc.2011.03.002 CrossRefGoogle Scholar
  58. 58.
    Oxford EM, Danko CG, Fox PR, Kornreich BG, Moise NS (2014) Change in beta-catenin localization suggests involvement of the canonical Wnt pathway in Boxer dogs with arrhythmogenic right ventricular cardiomyopathy. J Vet Intern Med 28:92–101.  https://doi.org/10.1111/jvim.12238 CrossRefGoogle Scholar
  59. 59.
    Paige CF, Abbott JA, Elvinger F, Pyle RL (2009) Prevalence of cardiomyopathy in apparently healthy cats. J Am Vet Med Assoc 234:1398–1403.  https://doi.org/10.2460/javma.234.11.1398 CrossRefGoogle Scholar
  60. 60.
    Payne J, Luis Fuentes V, Boswood A, Connolly D, Koffas H, Brodbelt D (2010) Population characteristics and survival in 127 referred cats with hypertrophic cardiomyopathy (1997 to 2005). J Small Anim Pract 51:540–547.  https://doi.org/10.1111/j.1748-5827.2010.00989.x CrossRefGoogle Scholar
  61. 61.
    Payne JR, Brodbelt DC, Luis Fuentes V (2015) Cardiomyopathy prevalence in 780 apparently healthy cats in rehoming centres (the CatScan study). J Vet Cardiol 17(Suppl 1):S244–S257.  https://doi.org/10.1016/j.jvc.2015.03.008 CrossRefGoogle Scholar
  62. 62.
    Reader JR, Canfield DR, Lane JF, Kanthaswamy S, Ardeshir A, Allen AM, Tarara RP (2016) Left ventricular hypertrophy in rhesus macaques (Macaca mulatta) at the California National Primate Research Center (1992-2014). Comp Med 66:162–169Google Scholar
  63. 63.
    Ripoll Vera T, Monserrat Iglesias L, Hermida Prieto M, Ortiz M, Rodriguez Garcia I, Govea Callizo N, Gomez Navarro C, Rosell Andreo J, Gamez Martinez JM, Pons Llado G, Cremer Luengos D, Torres Marques J (2010) The R820W mutation in the MYBPC3 gene, associated with hypertrophic cardiomyopathy in cats, causes hypertrophic cardiomyopathy and left ventricular non-compaction in humans. Int J Cardiol 145:405–407.  https://doi.org/10.1016/j.ijcard.2010.04.032 CrossRefGoogle Scholar
  64. 64.
    Simpson S, Edwards J, Ferguson-Mignan TF, Cobb M, Mongan NP, Rutland CS (2015) Genetics of human and canine dilated cardiomyopathy. Int J Genomics 2015:204823.  https://doi.org/10.1155/2015/204823 CrossRefGoogle Scholar
  65. 65.
    Simpson S, Dunning MD, Brownlie S, Patel J, Godden M, Cobb M, Mongan NP, Rutland CS (2016) Multiple genetic associations with Irish wolfhound dilated cardiomyopathy. Biomed Res Int 2016:6374082.  https://doi.org/10.1155/2016/6374082 CrossRefGoogle Scholar
  66. 66.
    Sosa I, Estrada AH, Winter BD, Erger KE, Conlon TJ (2016) In vitro evaluation of mitochondrial dysfunction and treatment with adeno-associated virus vector in fibroblasts from Doberman Pinschers with dilated cardiomyopathy and a pyruvate dehydrogenase kinase 4 mutation. Am J Vet Res 77:156–161.  https://doi.org/10.2460/ajvr.77.2.156 CrossRefGoogle Scholar
  67. 67.
    Stern JA, Markova S, Ueda Y, Kim JB, Pascoe PJ, Evanchik MJ, Green EM, Harris SP (2016) A small molecule inhibitor of sarcomere contractility acutely relieves left ventricular outflow tract obstruction in feline hypertrophic cardiomyopathy. PLoS One 11:e0168407.  https://doi.org/10.1371/journal.pone.0168407 CrossRefGoogle Scholar
  68. 68.
    Steudemann C, Bauersachs S, Weber K, Wess G (2013) Detection and comparison of microRNA expression in the serum of Doberman Pinschers with dilated cardiomyopathy and healthy controls. BMC Vet Res 9:12.  https://doi.org/10.1186/1746-6148-9-12 CrossRefGoogle Scholar
  69. 69.
    Summerfield NJ, Boswood A, O'Grady MR, Gordon SG, Dukes-McEwan J, Oyama MA, Smith S, Patteson M, French AT, Culshaw GJ, Braz-Ruivo L, Estrada A, O'Sullivan ML, Loureiro J, Willis R, Watson P (2012) Efficacy of pimobendan in the prevention of congestive heart failure or sudden death in Doberman Pinschers with preclinical dilated cardiomyopathy (the PROTECT Study). J Vet Intern Med 26:1337–1349.  https://doi.org/10.1111/j.1939-1676.2012.01026.x CrossRefGoogle Scholar
  70. 70.
    Taggart K, Estrada A, Thompson P, Lourenco F, Kirmani S, Suzuki-Hatano S, Pacak CA (2017) PDK4 deficiency induces intrinsic apoptosis in response to starvation in fibroblasts from Doberman Pinschers with dilated cardiomyopathy. BioResearch Open Access 6:182–191.  https://doi.org/10.1089/biores.2017.0023 CrossRefGoogle Scholar
  71. 71.
    Tidholm A, Haggstrom J, Borgarelli M, Tarducci A (2001) Canine idiopathic dilated cardiomyopathy. Part I: aetiology, clinical characteristics, epidemiology and pathology. Vet J (London, England : 1997) 162:92–107.  https://doi.org/10.1053/tvjl.2001.0571 CrossRefGoogle Scholar
  72. 72.
    Ueda Y, Stern JA (2017) A one health approach to hypertrophic cardiomyopathy. Yale J Biol Med 90:433–448Google Scholar
  73. 73.
    van Dijk SJ, Bezold Kooiker K, Mazzalupo S, Yang Y, Kostyukova AS, Mustacich DJ, Hoye ER, Stern JA, Kittleson MD, Harris SP (2016) The A31P missense mutation in cardiac myosin binding protein C alters protein structure but does not cause haploinsufficiency. Arch Biochem Biophys 601:133–140.  https://doi.org/10.1016/j.abb.2016.01.006 CrossRefGoogle Scholar
  74. 74.
    Wallner M, Eaton DM, Berretta RM, Borghetti G, Wu J, Baker ST, Feldsott EA, Sharp TE 3rd, Mohsin S, Oyama MA, von Lewinski D, Post H, Wolfson MR, Houser SR (2017) A feline HFpEF model with pulmonary hypertension and compromised pulmonary function. Sci Rep 7:16587.  https://doi.org/10.1038/s41598-017-15851-2 CrossRefGoogle Scholar
  75. 75.
    Wess G, Maurer J, Simak J, Hartmann K (2010) Use of Simpson's method of disc to detect early echocardiographic changes in Doberman Pinschers with dilated cardiomyopathy. J Vet Intern Med 24:1069–1076.  https://doi.org/10.1111/j.1939-1676.2010.0575.x CrossRefGoogle Scholar
  76. 76.
    Wess G, Schinner C, Weber K, Kuchenhoff H, Hartmann K (2010) Association of A31P and A74T polymorphisms in the myosin binding protein C3 gene and hypertrophic cardiomyopathy in Maine Coon and other breed cats. J Vet Intern Med 24:527–532.  https://doi.org/10.1111/j.1939-1676.2010.0514.x CrossRefGoogle Scholar
  77. 77.
    Wess G, Schulze A, Butz V, Simak J, Killich M, Keller LJ, Maeurer J, Hartmann K (2010) Prevalence of dilated cardiomyopathy in Doberman Pinschers in various age groups. J Vet Intern Med 24:533–538.  https://doi.org/10.1111/j.1939-1676.2010.0479.x CrossRefGoogle Scholar
  78. 78.
    Wess G, Simak J, Mahling M, Hartmann K (2010) Cardiac troponin I in Doberman Pinschers with cardiomyopathy. J Vet Intern Med 24:843–849.  https://doi.org/10.1111/j.1939-1676.2010.0516.x CrossRefGoogle Scholar
  79. 79.
    Wess G, Butz V, Mahling M, Hartmann K (2011) Evaluation of N-terminal pro-B-type natriuretic peptide as a diagnostic marker of various stages of cardiomyopathy in Doberman Pinschers. Am J Vet Res 72:642–649.  https://doi.org/10.2460/ajvr.72.5.642 CrossRefGoogle Scholar
  80. 80.
    Wess G, Domenech O, Dukes-McEwan J, Haggstrom J, Gordon S (2017) European Society of Veterinary Cardiology screening guidelines for dilated cardiomyopathy in Doberman Pinschers. J Vet Cardiol 19:405–415.  https://doi.org/10.1016/j.jvc.2017.08.006 CrossRefGoogle Scholar
  81. 81.
    Wigle ED, Rakowski H, Kimball BP, Williams WG (1995) Hypertrophic cardiomyopathy. Clinical spectrum and treatment. Circulation 92:1680–1692CrossRefGoogle Scholar
  82. 82.
    Zaragoza C, Gomez-Guerrero C, Martin-Ventura JL, Blanco-Colio L, Lavin B, Mallavia B, Tarin C, Mas S, Ortiz A, Egido J (2011) Animal models of cardiovascular diseases. J Biomed Biotechnol 2011:497841.  https://doi.org/10.1155/2011/497841 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Medicine and Epidemiology, School of Veterinary MedicineUniversity of California DavisDavisUSA

Personalised recommendations