Pflügers Archiv - European Journal of Physiology

, Volume 470, Issue 12, pp 1787–1801 | Cite as

Loss-of-function of Nav1.8/D1639N linked to human pain can be rescued by lidocaine

  • Luisa Kaluza
  • Jannis E. Meents
  • Martin Hampl
  • Corinna Rösseler
  • Petra A. I. Hautvast
  • Silvia Detro-Dassen
  • Ralf Hausmann
  • Günther Schmalzing
  • Angelika LampertEmail author
Molecular and cellular mechanisms of disease
Part of the following topical collections:
  1. Molecular and cellular mechanisms of disease


Mutations in voltage-gated sodium channels are associated with altered pain perception in humans. Most of these mutations studied to date present with a direct and intuitive link between the altered electrophysiological function of the channel and the phenotype of the patient. In this study, we characterize a variant of Nav1.8, D1639N, which has been previously identified in a patient suffering from the chronic pain syndrome “small fiber neuropathy”. Using a heterologous expression system and patch-clamp analysis, we show that Nav1.8/D1639N reduces current density without altering biophysical gating properties of Nav1.8. Therefore, the D1639N variant causes a loss-of-function of the Nav1.8 sodium channel in a patient suffering from chronic pain. Using immunocytochemistry and biochemical approaches, we show that Nav1.8/D1639N impairs trafficking of the channel to the cell membrane. Neither co-expression of β1 or β3 subunit, nor overnight incubation at 27 °C rescued current density of the D1639N variant. On the other hand, overnight incubation with lidocaine fully restored current density of Nav1.8/D1639N most likely by overcoming the trafficking defect, whereas phenytoin failed to do so. Since lidocaine rescues the loss-of-function of Nav1.8/D1639N, it may offer a future therapeutic option for the patient carrying this variant. These results demonstrate that the D1639N variant, identified in a patient suffering from chronic pain, causes loss-of-function of the channel due to impaired cell surface trafficking and that this trafficking defect can be rescued by lidocaine.


Small fiber neuropathy Inherited pain syndromes Local anesthetics Patch-clamp Mutagenesis Trafficking 



We thank Brigitte Hoch for excellent technical assistance. This work was supported by the Core Facility Flow Cytometry, a Core Facility of the Interdisciplinary Center for Clinical Research (IZKF) Aachen within the Faculty of Medicine at RWTH Aachen University.


This study was funded in parts by the DFG (HA 6095/1-2 to RH, LA 2740/3-1 to AL).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. All procedures performed in studies involving animals were in accordance with the ethical standards of the institution or practice at which the studies were conducted. This article does not contain any studies with human participants performed by any of the authors.

Supplementary material

424_2018_2189_MOESM1_ESM.docx (380 kb)
ESM 1 (DOCX 380 kb)


  1. 1.
    Akopian AN, Sivilotti L, Wood JN (1996) A tetrodotoxin-resistant voltage-gated sodium channel expressed by sensory neurons. Nature 379:257–262. CrossRefGoogle Scholar
  2. 2.
    Akopian AN, Souslova V, England S, Okuse K, Ogata N, Ure J, Smith A, Kerr BJ, McMahon SB, Boyce S, Hill R, Stanfa LC, Dickenson AH, Wood JN (1999) The tetrodotoxin-resistant sodium channel SNS has a specialized function in pain pathways. Nat Neurosci 2:541–548. CrossRefPubMedGoogle Scholar
  3. 3.
    Anderson CL, Delisle BP, Anson BD, Kilby JA, Will ML, Tester DJ, Gong Q, Zhou Z, Ackerman MJ, January CT (2006) Most LQT2 mutations reduce Kv11.1 (hERG) current by a class 2 (trafficking-deficient) mechanism. Circulation 113:365–373. CrossRefPubMedGoogle Scholar
  4. 4.
    Becker D, Woltersdorf R, Boldt W, Schmitz S, Braam U, Schmalzing G, Markwardt F (2008) The P2X7 carboxyl tail is a regulatory module of P2X7 receptor channel activity. J Biol Chem 283:25725–25734. CrossRefPubMedGoogle Scholar
  5. 5.
    Bökel C, Dass S, Wilsch-Bräuninger M, Roth S (2006) Drosophila Cornichon acts as cargo receptor for ER export of the TGFα-like growth factor Gurken. Development 133:459–470. CrossRefPubMedGoogle Scholar
  6. 6.
    Caffrey JM, Eng DL, Black JA, Waxman SG, Kocsis JD (1992) Three types of sodium channels in adult rat dorsal root ganglion neurons. Brain Res 592:283–297CrossRefGoogle Scholar
  7. 7.
    Castro CP, Piscopo D, Nakagawa T, Derynck R (2007) Cornichon regulates transport and secretion of TGFα-related proteins in metazoan cells. J Cell Sci 120:2454–2466. CrossRefPubMedGoogle Scholar
  8. 8.
    Chahine M, O’Leary ME (2011) Regulatory role of voltage-gated Na+ channel β subunits in sensory neurons. Front Pharmacol 2:70. CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Chevrier P, Vijayaragavan K, Chahine M (2004) Differential modulation of Nav1.7 and Nav1.8 peripheral nerve sodium channels by the local anesthetic lidocaine. Br J Pharmacol 142:576–584. CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Cummins TR (1997) Downregulation of tetrodotoxin-resistant sodium currents and upregulation of a rapidly repriming tetrodotoxin-sensitive sodium current in small spinal sensory neurons after nerve injury. J Neurosci 17:3503–3514CrossRefGoogle Scholar
  11. 11.
    Dabby R, Sadeh M, Broitman Y, Yosovich K, Dickman R, Leshinsky-Silver E (2016) Painful small fiber neuropathy with gastroparesis: a new phenotype with a novel mutation in the SCN10A gene. J Clin Neurosci 26:84–88. CrossRefPubMedGoogle Scholar
  12. 12.
    Denning GM, Anderson MP, Amara JF, Marshall J, Smith AE, Welsh MJ (1992) Processing of mutant cystic fibrosis transmembrane conductance regulator is temperature-sensitive. Nature 358:761–764. CrossRefPubMedGoogle Scholar
  13. 13.
    Djouhri L, Fang X, Okuse K, Wood JN, Berry CM, Lawson SN (2003) The TTX-resistant sodium channel Nav1.8 (SNS/PN3): expression and correlation with membrane properties in rat nociceptive primary afferent neurons. J Physiol 550:739–752. CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Faber CG, Lauria G, Merkies ISJ, Cheng X, Han C, Ahn H-S, Persson A-K, Hoeijmakers JGJ, Gerrits MM, Pierro T, Lombardi R, Kapetis D, Dib-Hajj SD, Waxman SG (2012) Gain-of-function Nav1.8 mutations in painful neuropathy. Proc Natl Acad Sci U S A 109:19444–19449. CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Fallah G, Römer T, Detro-Dassen S, Braam U, Markwardt F, Schmalzing G (2011) TMEM16A(a)/anoctamin-1 shares a homodimeric architecture with CLC chloride channels. Mol Cell Proteomics MCP 10:M110.004697. CrossRefPubMedGoogle Scholar
  16. 16.
    Gautron L, Sakata I, Udit S, Zigman JM, Wood JN, Elmquist JK (2011) Genetic tracing of Nav1.8-expressing vagal afferents in the mouse. J Comp Neurol 519:3085–3101. CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Gibson R, Schlesinger S, Kornfeld S (1979) The nonglycosylated glycoprotein of vesicular stomatitis virus is temperature-sensitive and undergoes intracellular aggregation at elevated temperatures. J Biol Chem 254:3600–3607PubMedGoogle Scholar
  18. 18.
    Gloor S, Pongs O, Schmalzing G (1995) A vector for the synthesis of cRNAs encoding Myc epitope-tagged proteins in Xenopus laevis oocytes. Gene 160:213–217CrossRefGoogle Scholar
  19. 19.
    Haeger S, Kuzmin D, Detro-Dassen S, Lang N, Kilb M, Tsetlin V, Betz H, Laube B, Schmalzing G (2010) An intramembrane aromatic network determines pentameric assembly of Cys-loop receptors. Nat Struct Mol Biol 17:90–98. CrossRefPubMedGoogle Scholar
  20. 20.
    Han C, Vasylyev D, Macala LJ, Gerrits MM, Hoeijmakers JGJ, Bekelaar KJ, Dib-Hajj SD, Faber CG, Merkies ISJ, Waxman SG (2014) The G1662S NaV1.8 mutation in small fibre neuropathy: impaired inactivation underlying DRG neuron hyperexcitability. J Neurol Neurosurg Psychiatry 85:499–505. CrossRefPubMedGoogle Scholar
  21. 21.
    Hoeijmakers JG, Faber CG, Lauria G, Merkies IS, Waxman SG (2012) Small-fibre neuropathies—advances in diagnosis, pathophysiology and management. Nat Rev Neurol 8:369–379. CrossRefPubMedGoogle Scholar
  22. 22.
    Hoshino H, Uchida T, Otsuki T, Kawamoto S, Okubo K, Takeichi M, Chisaka O (2007) Cornichon-like protein facilitates secretion of HB-EGF and regulates proper development of cranial nerves. Mol Biol Cell 18:1143–1152. CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Hu D, Barajas-Martínez H, Pfeiffer R, Dezi F, Pfeiffer J, Buch T, Betzenhauser MJ, Belardinelli L, Kahlig KM, Rajamani S, DeAntonio HJ, Myerburg RJ, Ito H, Deshmukh P, Marieb M, Nam G-B, Bhatia A, Hasdemir C, Haïssaguerre M, Veltmann C, Schimpf R, Borggrefe M, Viskin S, Antzelevitch C (2014) Mutations in SCN10A are responsible for a large fraction of cases of Brugada syndrome. J Am Coll Cardiol 64:66–79. CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Huang J, Yang Y, Zhao P, Gerrits MM, Hoeijmakers JGJ, Bekelaar K, Merkies ISJ, Faber CG, Dib-Hajj SD, Waxman SG (2013) Small-fiber neuropathy Nav1.8 mutation shifts activation to hyperpolarized potentials and increases excitability of dorsal root ganglion neurons. J Neurosci 33:14087–14097. CrossRefPubMedGoogle Scholar
  25. 25.
    Huang J, Vanoye CG, Cutts A, Goldberg YP, Dib-Hajj SD, Cohen CJ, Waxman SG, George AL (2017) Sodium channel NaV1.9 mutations associated with insensitivity to pain dampen neuronal excitability. J Clin Invest 127:2805–2814. CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Kaufman RJ (2002) Orchestrating the unfolded protein response in health and disease. J Clin Invest 110:1389–1398. CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Kirsch R, Joly E (1998) An improved PCR-mutagenesis strategy for two-site mutagenesis or sequence swapping between related genes. Nucleic Acids Res 26:1848–1850. CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Kist AM, Sagafos D, Rush AM, Neacsu C, Eberhardt E, Schmidt R, Lunden LK, Ørstavik K, Kaluza L, Meents J, Zhang Z, Carr TH, Salter H, Malinowsky D, Wollberg P, Krupp J, Kleggetveit IP, Schmelz M, Jørum E, Lampert A, Namer B (2016) SCN10A mutation in a patient with erythromelalgia enhances C-fiber activity dependent slowing. PLoS One 11:e0161789. CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Leipold E, Liebmann L, Korenke GC, Heinrich T, Gießelmann S, Baets J, Ebbinghaus M, Goral RO, Stödberg T, Hennings JC, Bergmann M, Altmüller J, Thiele H, Wetzel A, Nürnberg P, Timmerman V, De Jonghe P, Blum R, Schaible H-G, Weis J, Heinemann SH, Hübner CA, Kurth I (2013) A de novo gain-of-function mutation in SCN11A causes loss of pain perception. Nat Genet 45:1399–1404. CrossRefPubMedGoogle Scholar
  30. 30.
    Li Q, Su Y-Y, Wang H, Li L, Wang Q, Bao L (2010) Transmembrane segments prevent surface expression of sodium channel Nav1.8 and promote calnexin-dependent channel degradation. J Biol Chem 285:32977–32987. CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Novakovic SD, Tzoumaka E, McGivern JG, Haraguchi M, Sangameswaran L, Gogas KR, Eglen RM, Hunter JC (1998) Distribution of the tetrodotoxin-resistant sodium channel PN3 in rat sensory neurons in normal and neuropathic conditions. J Neurosci 18:2174–2187CrossRefGoogle Scholar
  32. 32.
    Núñez L, Barana A, Amorós I, de la Fuente MG, Dolz-Gaitón P, Gómez R, Rodríguez-García I, Mosquera I, Monserrat L, Delpón E, Caballero R, Castro-Beiras A, Tamargo J (2013) p.D1690N Nav1.5 rescues p.G1748D mutation gating defects in a compound heterozygous Brugada syndrome patient. Heart Rhythm 10:264–272. CrossRefPubMedGoogle Scholar
  33. 33.
    Okuse K, Malik-Hall M, Baker MD, Poon W-YL, Kong H, Chao MV, Wood JN (2002) Annexin II light chain regulates sensory neuron-specific sodium channel expression. Nature 417:653–656. CrossRefPubMedGoogle Scholar
  34. 34.
    Perez K, Yeam I, Jahn MM, Kang B-C (2006) Megaprimer-mediated domain swapping for construction of chimeric viruses. J Virol Methods 135:254–262. CrossRefPubMedGoogle Scholar
  35. 35.
    Ragsdale DS, McPhee JC, Scheuer T, Catterall WA (1996) Common molecular determinants of local anesthetic, antiarrhythmic, and anticonvulsant block of voltage-gated Na+ channels. Proc Natl Acad Sci U S A 93:9270–9275CrossRefGoogle Scholar
  36. 36.
    Ramachandra R, McGrew SY, Baxter JC, Kiveric E, Elmslie KS (2012) Tetrodotoxin-resistant voltage-dependent sodium channels in identified muscle afferent neurons. J Neurophysiol 108:2230–2241. CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Ramachandra R, McGrew SY, Baxter JC, Howard JR, Elmslie KS (2013) NaV1.8 channels are expressed in large, as well as small, diameter sensory afferent neurons. Channels Austin Tex 7:34–37. CrossRefGoogle Scholar
  38. 38.
    Renganathan M, Cummins TR, Waxman SG (2001) Contribution of Nav1.8 sodium channels to action potential electrogenesis in DRG neurons. J Neurophysiol 86:629–640CrossRefGoogle Scholar
  39. 39.
    Ronstedt K, Sternberg D, Detro-Dassen S, Gramkow T, Begemann B, Becher T, Kilian P, Grieschat M, Machtens J-P, Schmalzing G, Fischer M, Fahlke C (2015) Impaired surface membrane insertion of homo- and heterodimeric human muscle chloride channels carrying amino-terminal myotonia-causing mutations. Sci Rep 5:15382. CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Rusconi R, Scalmani P, Cassulini RR, Giunti G, Gambardella A, Franceschetti S, Annesi G, Wanke E, Mantegazza M (2007) Modulatory proteins can rescue a trafficking defective epileptogenic Nav1.1 Na+ channel mutant. J Neurosci 27:11037–11046. CrossRefPubMedGoogle Scholar
  41. 41.
    Rusconi R, Combi R, Cestèle S, Grioni D, Franceschetti S, Dalprà L, Mantegazza M (2009) A rescuable folding defective Nav1.1 (SCN1A) sodium channel mutant causes GEFS+: common mechanism in Nav1.1 related epilepsies? Hum Mutat 30:E747–E760. CrossRefPubMedGoogle Scholar
  42. 42.
    Schwarz DS, Blower MD (2016) The endoplasmic reticulum: structure, function and response to cellular signaling. Cell Mol Life Sci 73:79–94. CrossRefPubMedGoogle Scholar
  43. 43.
    Schwenk J, Harmel N, Zolles G, Bildl W, Kulik A, Heimrich B, Chisaka O, Jonas P, Schulte U, Fakler B, Klöcker N (2009) Functional proteomics identify cornichon proteins as auxiliary subunits of AMPA receptors. Science 323:1313–1319. CrossRefPubMedGoogle Scholar
  44. 44.
    Shields SD, Ahn H, Yang Y, Han C, Seal RP, Wood JN, Waxman SG, Dib-hajj SD (2012) Nav1.8 expression is not restricted to nociceptors in mouse peripheral nervous system. Pain 153:2017–2030. CrossRefPubMedGoogle Scholar
  45. 45.
    Stolz M, Klapperstück M, Kendzierski T, Detro-Dassen S, Panning A, Schmalzing G, Markwardt F (2015) Homodimeric anoctamin-1, but not homodimeric anoctamin-6, is activated by calcium increases mediated by the P2Y1 and P2X7 receptors. Pflugers Arch 467:2121–2140. CrossRefPubMedGoogle Scholar
  46. 46.
    Swanwick RS, Pristerá A, Okuse K (2010) The trafficking of NaV1.8. Neurosci Lett 486:78–83. CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Tabas I, Ron D (2011) Integrating the mechanisms of apoptosis induced by endoplasmic reticulum stress. Nat Cell Biol 13:184–190. CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Terragni B, Scalmani P, Franceschetti S, Cestèle S, Mantegazza M (2017) Post-translational dysfunctions in channelopathies of the nervous system. Neuropharmacology 132:31–42. CrossRefPubMedGoogle Scholar
  49. 49.
    Thomas D, Kiehn J, Katus HA, Karle CA (2003) Defective protein trafficking in hERG-associated hereditary long QT syndrome (LQT2): molecular mechanisms and restoration of intracellular protein processing. Cardiovasc Res 60:235–241. CrossRefPubMedGoogle Scholar
  50. 50.
    Valdivia CR, Tester DJ, Rok BA, Porter C-BJ, Munger TM, Jahangir A, Makielski JC, Ackerman MJ (2004) A trafficking defective, Brugada syndrome-causing SCN5A mutation rescued by drugs. Cardiovasc Res 62:53–62. CrossRefPubMedGoogle Scholar
  51. 51.
    van den Boogaard M, Smemo S, Burnicka-Turek O, Arnolds DE, van de Werken HJG, Klous P, McKean D, Muehlschlegel JD, Moosmann J, Toka O, Yang XH, Koopmann TT, Adriaens ME, Bezzina CR, de Laat W, Seidman C, Seidman JG, Christoffels VM, Nobrega MA, Barnett P, Moskowitz IP (2014) A common genetic variant within SCN10A modulates cardiac SCN5A expression. J Clin Invest 124:1844–1852. CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Vijayaragavan K, Powell AJ, Kinghorn IJ, Chahine M (2004) Role of auxiliary beta1-, beta2-, and beta3-subunits and their interaction with Na(v)1.8 voltage-gated sodium channel. Biochem Biophys Res Commun 319:531–540. CrossRefPubMedGoogle Scholar
  53. 53.
    Waxman SG, Kocsis JD, Black JA (1994) Type III sodium channel mRNA is expressed in embryonic but not adult spinal sensory neurons, and is reexpressed following axotomy. J Neurophysiol 72:466–470CrossRefGoogle Scholar
  54. 54.
    Weiner MP, Costa GL, Schoettlin W, Cline J, Mathur E, Bauer JC (1994) Site-directed mutagenesis of double-stranded DNA by the polymerase chain reaction. Gene 151:119–123CrossRefGoogle Scholar
  55. 55.
    Wong H-K, Sakurai T, Oyama F, Kaneko K, Wada K, Miyazaki H, Kurosawa M, Strooper BD, Saftig P, Nukina N (2005) β subunits of voltage-gated sodium channels are novel substrates of β-site amyloid precursor protein-cleaving enzyme (BACE1) and γ-secretase. J Biol Chem 280:23009–23017. CrossRefPubMedGoogle Scholar
  56. 56.
    Zeng Z, Zeng Z, Xie Q, Xie Q, Huang Y, Huang Y, Zhao Y, Zhao Y, Li W, Li W, Huang Z, Huang Z (2016) p.D1690N sodium voltage-gated channel α subunit 5 mutation reduced sodium current density and is associated with Brugada syndrome. Mol Med Rep 13:5216–5222CrossRefGoogle Scholar
  57. 57.
    Zhao J, Ziane R, Chatelier A, O’Leary ME, Chahine M (2007) Lidocaine promotes the trafficking and functional expression of Nav1.8 sodium channels in mammalian cells. J Neurophysiol 98:467–477. CrossRefPubMedGoogle Scholar
  58. 58.
    Zhao J, O’Leary ME, Chahine M (2011) Regulation of Nav1.6 and Nav1.8 peripheral nerve Na+ channels by auxiliary β-subunits. J Neurophysiol 106:608–619. CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Zhou Z, Gong Q, January CT (1999) Correction of defective protein trafficking of a mutant HERG potassium channel in human long QT syndrome. Pharmacological and temperature effects. J Biol Chem 274:31123–31126CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Luisa Kaluza
    • 1
  • Jannis E. Meents
    • 1
  • Martin Hampl
    • 1
    • 2
  • Corinna Rösseler
    • 1
  • Petra A. I. Hautvast
    • 1
  • Silvia Detro-Dassen
    • 3
  • Ralf Hausmann
    • 3
  • Günther Schmalzing
    • 3
  • Angelika Lampert
    • 1
    Email author
  1. 1.Institute of PhysiologyUniklinik RWTH Aachen, RWTH Aachen UniversityAachenGermany
  2. 2.Institute of Physiology and PathophysiologyFriedrich-Alexander University Erlangen-NürnbergErlangenGermany
  3. 3.Department of Molecular PharmacologyRWTH Aachen UniversityAachenGermany

Personalised recommendations