Pflügers Archiv - European Journal of Physiology

, Volume 470, Issue 11, pp 1615–1631 | Cite as

Loss of barrier integrity in alveolar epithelial cells downregulates ENaC expression and activity via Ca2+ and TRPV4 activation

  • André DagenaisEmail author
  • Julie Desjardins
  • Waheed Shabbir
  • Antoine Roy
  • Dominic Filion
  • Rémy Sauvé
  • Yves Berthiaume
Molecular and cellular mechanisms of disease
Part of the following topical collections:
  1. Molecular and cellular mechanisms of disease


The epithelial Na channel (ENaC) plays an essential role in lung physiology by modulating the amount of liquid lining the respiratory epithelium. Here, we tested the effect of breaking alveolar epithelial cell barrier integrity on ENaC expression and function. We found that either mechanical wounding by scratching the monolayer or disruption of tight junction with EDTA induced a ~ 50% decrease of α,β and γENaC mRNA expression and an 80% reduction of ENaC short-circuit current (Isc) at 6 h. Scratching the cell monolayer generated a Ca2+ wave that spread from the margin of the scratch to distant cells. Pretreatment with BAPTA-AM, an intracellular Ca2+ chelator, abolished the effect of mechanical wounding and EDTA on αENaC mRNA expression, suggesting that [Ca2+]i is important for this modulation. We tested the hypothesis that a mechanosensitive channel such as TRPV4, a cationic channel known to increase [Ca2+]i, could mediate this effect. Activation of the channel with the TRPV4 specific agonist GSK-1016790A (GSK) decreased αENAC mRNA expression and almost completely abolished ENaC Isc. Pretreatment of alveolar epithelial cells with HC-067047 (HC0), a specific TRPV4 antagonist, reduced the extent of αENAC mRNA downregulation by mechanical wounding and EDTA. Altogether, our results suggest that mechanical stress induced by wounding or TRPV4-mediated loss of tight junction increases [Ca2+]i and elicits a Ca2+ wave that affects ENaC expression and function away from the site of injury. These data are important to better understand how Ca2+ signaling affects lung liquid clearance in injured lungs.


Epithelial Na channel ENaC TRPV4 Ca2+ wave Mechanotransduction Alveolar epithelial cells Lung injury Loss of barrier integrity 



This work is dedicated to the memory of Gregory Voisin who participated to the identification of TRPV channels in alveolar epithelial cells.

Funding information

This work was funded by the IRCM Gosselin-Lamarre chair in clinical research.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

424_2018_2182_MOESM1_ESM.docx (13 kb)
ESM 1 (DOCX 13 kb)
424_2018_2182_MOESM2_ESM.pdf (199 kb)
ESM 2 Detection of TRPV4 channel activity by patch clamp in alveolar epithelial cells (PDF 198 kb)


  1. 1.
    Alli AA, Bao HF, Alli AA, Aldrugh Y, Song JZ, Ma HP, Yu L, Al-Khalili O, Eaton DC (2012) Phosphatidylinositol phosphate-dependent regulation of Xenopus ENaC by MARCKS protein. Am J Physiol Renal Physiol 303:F800–F811CrossRefPubMedCentralGoogle Scholar
  2. 2.
    Alli AA, Bao HF, Liu BC, Yu L, Aldrugh S, Montgomery DS, Ma HP, Eaton DC (2015) Calmodulin and CaMKII modulate ENaC activity by regulating the association of MARCKS and the cytoskeleton with the apical membrane. Am J Physiol Ren Physiol 309:F456–F463CrossRefGoogle Scholar
  3. 3.
    Alvarez DF, King JA, Weber D, Addison E, Liedtke W, Townsley MI (2006) Transient receptor potential vanilloid 4-mediated disruption of the alveolar septal barrier: a novel mechanism of acute lung injury. Circ Res 99:988–995CrossRefPubMedCentralGoogle Scholar
  4. 4.
    Arniges M, Vazquez E, Fernandez-Fernandez JM, Valverde MA (2004) Swelling-activated Ca2+ entry via TRPV4 channel is defective in cystic fibrosis airway epithelia. J Biol Chem 279:54062–54068CrossRefPubMedCentralGoogle Scholar
  5. 5.
    Balakrishna S, Song W, Achanta S, Doran SF, Liu B, Kaelberer MM, Yu Z, Sui A, Cheung M, Leishman E, Eidam HS, Ye G, Willette RN, Thorneloe KS, Bradshaw HB, Matalon S, Jordt SE (2014) TRPV4 inhibition counteracts edema and inflammation and improves pulmonary function and oxygen saturation in chemically induced acute lung injury. Am J Physiol Lung Cell Mol Physiol 307:L158–L172CrossRefPubMedCentralGoogle Scholar
  6. 6.
    Berthiaume Y, Matthay MA (2007) Alveolar edema fluid clearance and acute lung injury. Respir Physiol Neurobiol 159:350–359CrossRefPubMedCentralGoogle Scholar
  7. 7.
    Berthiaume Y, Folkesson HG, Matthay MA (2002) Lung edema clearance: 20 years of progress: invited review: alveolar edema fluid clearance in the injured lung. J Appl Physiol 93:2207–2213CrossRefPubMedCentralGoogle Scholar
  8. 8.
    Boncoeur E, Tardif V, Tessier MC, Morneau F, Lavoie J, Gendreau-Berthiaume E, Grygorczyk R, Dagenais A, Berthiaume Y (2010) Modulation of epithelial sodium channel activity by lipopolysaccharide in alveolar type II cells: involvement of purinergic signaling. Am J Physiol Lung Cell Mol Physiol 298:L417–L426CrossRefPubMedCentralGoogle Scholar
  9. 9.
    Chen XJ, Seth S, Yue G, Kamat P, Compans RW, Guidot D, Brown LA, Eaton DC, Jain L (2004) Influenza virus inhibits ENaC and lung fluid clearance. Am J Physiol Lung Cell Mol Physiol 287:L366–L373CrossRefPubMedCentralGoogle Scholar
  10. 10.
    Chen L, Song W, Davis IC, Shrestha K, Schwiebert E, Sullender WM, Matalon S (2009) Inhibition of Na+ transport in lung epithelial cells by respiratory syncytial virus infection. Am J Respir Cell Mol Biol 40:588–600CrossRefPubMedCentralGoogle Scholar
  11. 11.
    Chifflet S, Hernandez JA (2016) The epithelial sodium channel and the processes of wound healing. Biomed Res Int 2016:5675047CrossRefPubMedCentralGoogle Scholar
  12. 12.
    Chifflet S, Justet C, Hernandez JA, Nin V, Escande C, Benech JC (2012) Early and late calcium waves during wound healing in corneal endothelial cells. Wound Repair Regen 20:28–37CrossRefPubMedCentralGoogle Scholar
  13. 13.
    Clapham DE (2007) Calcium signaling. Cell 131:1047–1058CrossRefGoogle Scholar
  14. 14.
    Cuffe JE, Bielfeld-Ackermann A, Thomas J, Leipziger J, Korbmacher C (2000) ATP stimulates cl- secretion and reduces amiloride-sensitive Na+ absorption in M-1 mouse cortical collecting duct cells. J Physiol 524(Pt 1):77–90CrossRefPubMedCentralGoogle Scholar
  15. 15.
    Dagenais A, Fréchette R, Yamagata Y, Yamagata Y, Carmel J-F, Clermont M-E, Brochiero E, Massé C, Berthiaume Y (2004) Downregulation of ENaC activity and expression by TNFa in alveolar epithelial cells. Am J Physiol Lung Cell Mol Physiol 286:L301–L311CrossRefPubMedCentralGoogle Scholar
  16. 16.
    Dagenais A, Gosselin D, Guilbault C, Radzioch D, Berthiaume Y (2005) Modulation of epithelial sodium channel (ENaC) expression in mouse lung infected with Pseudomonas aeruginosa. Respir Res 6(2)Google Scholar
  17. 17.
    Dagenais A, Frechette R, Clermont ME, Masse C, Prive A, Brochiero E, Berthiaume Y (2006) Dexamethasone inhibits the action of TNF on ENaC expression and activity. Am J Physiol Lung Cell Mol Physiol 291:L1220–L1231CrossRefPubMedCentralGoogle Scholar
  18. 18.
    Dagenais A, Tessier MC, Tatur S, Brochiero E, Grygorczyk R, Berthiaume Y (2013) Hypotonic shock modulates Na(+) current via a Cl(-) and Ca(2+)/calmodulin dependent mechanism in alveolar epithelial cells. PLoS One 8:e74565CrossRefPubMedCentralGoogle Scholar
  19. 19.
    Davis IC, Matalon S (2007) Epithelial sodium channels in the adult lung--important modulators of pulmonary health and disease. Adv Exp Med Biol 618:127–140CrossRefPubMedCentralGoogle Scholar
  20. 20.
    De Logu F, Patacchini R, Fontana G, Geppetti P (2016) TRP functions in the broncho-pulmonary system. Semin Immunopathol 38:321–329CrossRefPubMedCentralGoogle Scholar
  21. 21.
    de Prost N, Ricard JD, Saumon G, Dreyfuss D (2011) Ventilator-induced lung injury: historical perspectives and clinical implications. Ann Intensive Care 1:28CrossRefPubMedCentralGoogle Scholar
  22. 22.
    Dolmetsch RE, Lewis RS, Goodnow CC, Healy JI (1997) Differential activation of transcription factors induced by Ca2+ response amplitude and duration. Nature 386:855–858CrossRefGoogle Scholar
  23. 23.
    Downs CA, Kreiner L, Zhao XM, Trac P, Johnson NM, Hansen JM, Brown LA, Helms MN (2015) Oxidized glutathione (GSSG) inhibits epithelial sodium channel activity in primary alveolar epithelial cells. Am J Physiol Lung Cell Mol Physiol 308:L943–L952CrossRefPubMedCentralGoogle Scholar
  24. 24.
    Feng Z-P, Clark RB, Berthiaume Y (1993) Identification of nonselective cation channels in cultured adult rat alveolar aype II cells. Am J Respir Cell Mol Biol 9:248–254CrossRefPubMedCentralGoogle Scholar
  25. 25.
    Fernandez-Fernandez JM, Andrade YN, Arniges M, Fernandes J, Plata C, Rubio-Moscardo F, Vazquez E, Valverde MA (2008) Functional coupling of TRPV4 cationic channel and large conductance, calcium-dependent potassium channel in human bronchial epithelial cell lines. Pflugers Arch Eur J Physiol 457:149–159CrossRefGoogle Scholar
  26. 26.
    Frank J, Roux J, Kawakatsu H, Su G, Dagenais A, Berthiaume Y, Howard MB, Canessa C, Fang XH, Sheppard D, Matthay MA, Pittet JF (2003) TGF-b1 decreases aENaC expression and alveolar epithelial vectorial sodium and fluid transport via an ERK 1/2-dependent mechanism. J Biol Chem 278:43939–43950CrossRefPubMedCentralGoogle Scholar
  27. 27.
    Goldenberg NM, Ravindran K, Kuebler WM (2015) TRPV4: physiological role and therapeutic potential in respiratory diseases. Naunyn Schmiedeberg's Arch Pharmacol 388:421–436CrossRefGoogle Scholar
  28. 28.
    Hamanaka K, Jian MY, Weber DS, Alvarez DF, Townsley MI, Al-Mehdi AB, King JA, Liedtke W, Parker JC (2007) TRPV4 initiates the acute calcium-dependent permeability increase during ventilator-induced lung injury in isolated mouse lungs. Am J Physiol Lung Cell Mol Physiol 293:L923–L932CrossRefPubMedCentralGoogle Scholar
  29. 29.
    Henry CO, Dalloneau E, Perez-Berezo MT, Plata C, Wu Y, Guillon A, Morello E, Aimar RF, Potier-Cartereau M, Esnard F, Coraux C, Bornchen C, Kiefmann R, Vandier C, Touqui L, Valverde MA, Cenac N, Si-Tahar M (2016) In vitro and in vivo evidence for an inflammatory role of the calcium channel TRPV4 in lung epithelium: potential involvement in cystic fibrosis. Am J Physiol Lung Cell Mol Physiol 311:L664–L675CrossRefPubMedCentralGoogle Scholar
  30. 30.
    Hickman-Davis JM, McNicholas-Bevensee C, Davis IC, Ma HP, Davis GC, Bosworth CA, Matalon S (2006) Reactive species mediate inhibition of alveolar type II sodium transport during mycoplasma infection. Am J Respir Crit Care Med 173:334–344CrossRefPubMedCentralGoogle Scholar
  31. 31.
    Hinman LE, Beilman GJ, Groehler KE, Sammak PJ (1997) Wound-induced calcium waves in alveolar type II cells. Am J Phys 273:L1242–L1248Google Scholar
  32. 32.
    Hummler E, Barker P, Gatzy J, Beermann F, Verdumo C, Schmidt A, Boucher R, Rossier BC (1996) Early death due to defective neonatal lung liquid clearance in aENaC-deficient mice. Nat Genet 12:325–328CrossRefPubMedCentralGoogle Scholar
  33. 33.
    Isakson BE, Evans WH, Boitano S (2001) Intercellular Ca2+ signaling in alveolar epithelial cells through gap junctions and by extracellular ATP. Am J Physiol Lung Cell Mol Physiol 280:L221–L228CrossRefPubMedCentralGoogle Scholar
  34. 34.
    Ishikawa T, Marunaka Y, Rotin D (1998) Electrophysiological characterization of the rat epithelial Na+ channel (rENaC) expressed in MDCK cells. Effects of Na+ and Ca2+. J Gen Physiol 111:825–846CrossRefPubMedCentralGoogle Scholar
  35. 35.
    Jain M, Sznajder JI (2005) Effects of hypoxia on the alveolar epithelium. Proc Am Thorac Soc 2:202–205CrossRefPubMedCentralGoogle Scholar
  36. 36.
    Kar P, Parekh AB (2015) Distinct spatial Ca2+ signatures selectively activate different NFAT transcription factor isoforms. Mol Cell 58:232–243CrossRefPubMedCentralGoogle Scholar
  37. 37.
    Kunzelmann K, Scheidt K, Scharf B, Ousingsawat J, Schreiber R, Wainwright B, McMorran B (2006) Flagellin of Pseudomonas aeruginosa inhibits Na+ transport in airway epithelia. FASEB J 20:545–546CrossRefPubMedCentralGoogle Scholar
  38. 38.
    Lazrak A, Iles KE, Liu G, Noah DL, Noah JW, Matalon S (2009) Influenza virus M2 protein inhibits epithelial sodium channels by increasing reactive oxygen species. FASEB J 23:3829–3842CrossRefPubMedCentralGoogle Scholar
  39. 39.
    Leiper LJ, Walczysko P, Kucerova R, Ou J, Shanley LJ, Lawson D, Forrester JV, McCaig CD, Zhao M, Collinson JM (2006) The roles of calcium signaling and ERK1/2 phosphorylation in a Pax6+/− mouse model of epithelial wound-healing delay. BMC Biol 4:27CrossRefPubMedCentralGoogle Scholar
  40. 40.
    Lin MT, Jian MY, Taylor MS, Cioffi DL, Yap FC, Liedtke W, Townsley MI (2015) Functional coupling of TRPV4, IK, and SK channels contributes to Ca(2+)-dependent endothelial injury in rodent lung. Pulm Circ 5:279–290CrossRefPubMedCentralGoogle Scholar
  41. 41.
    Lin X, Barravecchia M, Kothari P, Young JL, Dean DA (2016) beta1-Na(+),K(+)-ATPase gene therapy upregulates tight junctions to rescue lipopolysaccharide-induced acute lung injury. Gene Ther 23:489–499CrossRefPubMedCentralGoogle Scholar
  42. 42.
    Matalon S, Bartoszewski R, Collawn JF (2015) Role of epithelial sodium channels in the regulation of lung fluid homeostasis. Am J Physiol Lung Cell Mol Physiol 309:L1229–L1238CrossRefPubMedCentralGoogle Scholar
  43. 43.
    Matthay MA, Ware LB, Zimmerman GA (2012) The acute respiratory distress syndrome. J Clin Invest 122:2731–2740CrossRefPubMedCentralGoogle Scholar
  44. 44.
    Mazzon E, Cuzzocrea S (2007) Role of TNF-alpha in lung tight junction alteration in mouse model of acute lung inflammation. Respir Res 8(75)Google Scholar
  45. 45.
    Merzlikine A, Rotter C, Rago B, Poe J, Christoffersen C, Thomas VH, Troutman M, El-Kattan A (2009) Effect of chitosan glutamate, carbomer 974P, and EDTA on the in vitro Caco-2 permeability and oral pharmacokinetic profile of acyclovir in rats. Drug Dev Ind Pharm 35:1082–1091CrossRefPubMedCentralGoogle Scholar
  46. 46.
    Migneault F, Boncoeur E, Morneau F, Pascariu M, Dagenais A, Berthiaume Y (2013) Cycloheximide and lipopolysaccharide downregulate alphaENaC mRNA via different mechanisms in alveolar epithelial cells. Am J Physiol Lung Cell Mol Physiol 305:L747–L755CrossRefPubMedCentralGoogle Scholar
  47. 47.
    Monteith GR, Prevarskaya N, Roberts-Thomson SJ (2017) The calcium-cancer signalling nexus. Nat Rev Cancer 17:367–380CrossRefPubMedCentralGoogle Scholar
  48. 48.
    O'Neil RG, Heller S (2005) The mechanosensitive nature of TRPV channels. Pflugers Arch Eur J Physiol 451:193–203CrossRefGoogle Scholar
  49. 49.
    Pittet JF, Griffiths MJ, Geiser T, Kaminski N, Dalton SL, Huang X, Brown LA, Gotwals PJ, Koteliansky VE, Matthay MA, Sheppard D (2001) TGF-beta is a critical mediator of acute lung injury. J Clin Invest 107:1537–1544CrossRefPubMedCentralGoogle Scholar
  50. 50.
    Pittet JF, Lu LN, Morris DG, Modelska K, Welch WJ, Carey HV, Roux J, Matthay MA (2001) Reactive nitrogen species inhibit alveolar epithelial fluid transport after hemorrhagic shock in rats. JImmunol 166:6301–6310CrossRefGoogle Scholar
  51. 51.
    Pittet JF, Koh H, Fang X, Iles K, Christiaans S, Anjun N, Wagener BM, Park DW, Zmijewski JW, Matthay MA, Roux J (2013) HMGB1 accelerates alveolar epithelial repair via an IL-1beta- and alphavbeta6 integrin-dependent activation of TGF-beta1. PLoS One 8:e63907CrossRefPubMedCentralGoogle Scholar
  52. 52.
    Planes C, Blot-Chabaud M, Matthay MA, Couette S, Uchida T, Clerici C (2002) Hypoxia and beta 2-agonists regulate cell surface expression of the epithelial sodium channel in native alveolar epithelial cells. J Biol Chem 277:47318–47324CrossRefPubMedCentralGoogle Scholar
  53. 53.
    Poulsen AN, Klausen TL, Pedersen PS, Willumsen NJ, Frederiksen O (2005) Regulation of ion transport via apical purinergic receptors in intact rabbit airway epithelium. Pflugers Arch Eur J Physiol 450:227–235CrossRefGoogle Scholar
  54. 54.
    Razzell W, Evans IR, Martin P, Wood W (2013) Calcium flashes orchestrate the wound inflammatory response through DUOX activation and hydrogen peroxide release. Curr Biol 23:424–429CrossRefPubMedCentralGoogle Scholar
  55. 55.
    Reid B, Zhao M (2014) The electrical response to injury: molecular mechanisms and wound healing. Adv Wound Care 3:184–201CrossRefGoogle Scholar
  56. 56.
    Reiter B, Kraft R, Gunzel D, Zeissig S, Schulzke JD, Fromm M, Harteneck C (2006) TRPV4-mediated regulation of epithelial permeability. FASEB J 20:1802–1812CrossRefGoogle Scholar
  57. 57.
    Rokkam D, Lafemina MJ, Lee JW, Matthay MA, Frank JA (2011) Claudin-4 levels are associated with intact alveolar fluid clearance in human lungs. Am J Pathol 179:1081–1087CrossRefPubMedCentralGoogle Scholar
  58. 58.
    Roux J, Kawakatsu H, Gartland B, Pespeni M, Sheppard D, Matthay MA, Canessa CM, Pittet JF (2005) Interleukin-1b decreases expression of the epithelial sodium channel a-subunit in alveolar epithelial cells via a p38 MAPK-dependent signaling pathway. J Biol Chem 280:18579–18589CrossRefPubMedCentralGoogle Scholar
  59. 59.
    Schwingshackl A (2016) The role of stretch-activated ion channels in acute respiratory distress syndrome: finally a new target? Am J Physiol Lung Cell Mol Physiol 311:L639–L652CrossRefPubMedCentralGoogle Scholar
  60. 60.
    Taruno A, Niisato N, Marunaka Y (2008) Intracellular calcium plays a role as the second messenger of hypotonic stress in gene regulation of SGK1 and ENaC in renal epithelial A6 cells. Am J Physiol Ren Physiol 294:F177–F186CrossRefGoogle Scholar
  61. 61.
    Thorneloe KS, Sulpizio AC, Lin Z, Figueroa DJ, Clouse AK, McCafferty GP, Chendrimada TP, Lashinger ES, Gordon E, Evans L, Misajet BA, Demarini DJ, Nation JH, Casillas LN, Marquis RW, Votta BJ, Sheardown SA, Xu X, Brooks DP, Laping NJ, Westfall TD (2008) N-((1S)-1-{[4-((2S)-2-{[(2,4-dichlorophenyl)sulfonyl]amino}-3-hydroxypropanoyl)-1 -piperazinyl]carbonyl}-3-methylbutyl)-1-benzothiophene-2-carboxamide (GSK1016790A), a novel and potent transient receptor potential vanilloid 4 channel agonist induces urinary bladder contraction and hyperactivity: part I. J Pharmacol Exp Ther 326:432–442CrossRefPubMedCentralGoogle Scholar
  62. 62.
    Vriens J, Watanabe H, Janssens A, Droogmans G, Voets T, Nilius B (2004) Cell swelling, heat, and chemical agonists use distinct pathways for the activation of the cation channel TRPV4. Proc Natl Acad Sci U S A 101:396–401CrossRefPubMedCentralGoogle Scholar
  63. 63.
    Wandall-Frostholm C, Dalsgaard T, Bajoriunas V, Olivan-Viguera A, Sadda V, Beck L, Mogensen S, Stankevicius E, Simonsen U, Kohler R (2015) Genetic deficit of KCa 3.1 channels protects against pulmonary circulatory collapse induced by TRPV4 channel activation. Br J Pharmacol 172:4493–4505CrossRefPubMedCentralGoogle Scholar
  64. 64.
    Wang XF, Chan HC (2000) Adenosine triphosphate induces inhibition of Na(+) absorption in mouse endometrial epithelium: a Ca(2+)-dependent mechanism [in process citation]. Biol Reprod 63:1918–1924CrossRefPubMedCentralGoogle Scholar
  65. 65.
    Ward PD, Tippin TK, Thakker DR (2000) Enhancing paracellular permeability by modulating epithelial tight junctions. Pharm Sci Technol Today 3:346–358CrossRefPubMedCentralGoogle Scholar
  66. 66.
    Ware LB (2004) Modulation of alveolar fluid clearance by acute inflammation: the plot thickens. Am J Respir Crit Care Med 169:332–333CrossRefPubMedCentralGoogle Scholar
  67. 67.
    Watanabe H, Vriens J, Prenen J, Droogmans G, Voets T, Nilius B (2003) Anandamide and arachidonic acid use epoxyeicosatrienoic acids to activate TRPV4 channels. Nature 424:434–438CrossRefPubMedCentralGoogle Scholar
  68. 68.
    Wetsel WC (2011) Sensing hot and cold with TRP channels. Int J hyperthermia 27:388–398CrossRefPubMedCentralGoogle Scholar
  69. 69.
    Wu S, Jian MY, Xu YC, Zhou C, Al-Mehdi AB, Liedtke W, Shin HS, Townsley MI (2009) Ca2+ entry via alpha1G and TRPV4 channels differentially regulates surface expression of P-selectin and barrier integrity in pulmonary capillary endothelium. Am J Physiol Lung Cell Mol Physiol 297:L650–L657CrossRefPubMedCentralGoogle Scholar
  70. 70.
    Yin J, Michalick L, Tang C, Tabuchi A, Goldenberg N, Dan Q, Awwad K, Wang L, Erfinanda L, Nouailles G, Witzenrath M, Vogelzang A, Lv L, Lee WL, Zhang H, Rotstein O, Kapus A, Szaszi K, Fleming I, Liedtke WB, Kuppe H, Kuebler WM (2016) Role of transient receptor potential vanilloid 4 in neutrophil activation and acute lung injury. Am J Respir Cell Mol Biol 54:370–383CrossRefPubMedCentralGoogle Scholar
  71. 71.
    Yu Q, Wang Z, Li P, Yang Q (2013) The effect of various absorption enhancers on tight junction in the human intestinal Caco-2 cell line. Drug Dev Ind Pharm 39:587–592CrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institut de recherches cliniques de MontréalQuebecCanada
  2. 2.Département de médecineUniversité de MontréalMontrealCanada
  3. 3.Institute of Pharmacology and ToxicologyUniversity of ViennaViennaAustria
  4. 4.Département de pharmacologie et physiologieUniversité de MontréalMontrealCanada

Personalised recommendations