Advertisement

Visualizing the regulation of SLC34 proteins at the apical membrane

  • Moshe LeviEmail author
  • Enrico Gratton
Invited Review
  • 405 Downloads
Part of the following topical collections:
  1. Invited Review

Abstract

The cloning of the renal NaPi-2a (SLC34A1) and NaPi-2c (SLC34A3) phosphate transporters has made it possible to characterize the molecular and biophysical regulation of renal proximal tubular reabsorption of inorganic phosphate (Pi). Dietary factors, such as Pi and K, and several hormones and phosphatonins, including parathyroid hormone (PTH), fibroblast growth factor 23 (FGF23), and glucocorticoids, regulate the transporters through various transcriptional, translational, and post-translational mechanisms that involve acute trafficking via endocytosis or exocytosis, interactions with PDZ domain proteins, lipid microdomains, and diffusion and clustering in the apical brush border membrane. The visualization of these trafficking events by means of novel microscopy techniques that includes fluorescence lifetime imaging microscopy (FLIM), Förster resonance energy transfer (FRET), fluctuation correlation spectroscopy (FCS), and modulation tracking (MT), is the primary focus of this review.

Keywords

NaPi-PDZ protein interactions NaPi transporter diffusion and clustering NaPi-lipid interactions Fluorescence lifetime imaging microscopy (FLIM) Förster resonance energy transfer (FRET) Fluctuation correlation spectroscopy (FCS) 

Notes

Acknowledgements

The authors also acknowledge the valuable contributions of several investigators in the Enrico Gratton, Moshe Levi, and Heini Murer labs that made these studies possible.

Funding information

The studies in this review were supported by the National Institute of General Medical Sciences (NIGMS) NIH grant 2P41GM103540 to Enrico Gratton and NIDDK National Institutes of Health grant R01 DK066029 to Moshe Levi.

References

  1. 1.
    Alcalde AI, Sarasa M, Raldua D, Aramayona J, Morales R, Biber J, Murer H, Levi M, Sorribas V (1999) Role of thyroid hormone in regulation of renal phosphate transport in young and aged rats. Endocrinology 140:1544–1551.  https://doi.org/10.1210/endo.140.4.6658 CrossRefGoogle Scholar
  2. 2.
    Barrett PQ, Gertner JM, Rasmussen H (1980) Effect of dietary phosphate on transport properties of pig renal microvillus vesicles. Am J Phys 239:F352–F359Google Scholar
  3. 3.
    Biber J, Gisler SM, Hernando N, Wagner CA, Murer H (2004) PDZ interactions and proximal tubular phosphate reabsorption. Am J Physiol Ren Physiol 287:F871–F875.  https://doi.org/10.1152/ajprenal.00244.2004 CrossRefGoogle Scholar
  4. 4.
    Biber J, Gisler SM, Hernando N, Murer H (2005) Protein/protein interactions (PDZ) in proximal tubules. J Membr Biol 203:111–118.  https://doi.org/10.1007/s00232-005-0738-7 CrossRefGoogle Scholar
  5. 5.
    Blaine J, Okamura K, Giral H, Breusegem S, Caldas Y, Millard A, Barry N, Levi M (2009) PTH-induced internalization of apical membrane NaPi2a: role of actin and myosin VI. Am J Phys Cell Physiol 297:C1339–C1346.  https://doi.org/10.1152/ajpcell.00260.2009 CrossRefGoogle Scholar
  6. 6.
    Blaine J, Chonchol M, Levi M (2015) Renal control of calcium, phosphate, and magnesium homeostasis. Clin J Am Soc Nephrol 10:1257–1272.  https://doi.org/10.2215/CJN.09750913 CrossRefGoogle Scholar
  7. 7.
    Breusegem SY, Halaihel N, Inoue M, Zajicek H, Lederer E, Barry NP, Sorribas V, Levi M (2005) Acute and chronic changes in cholesterol modulate Na-Pi cotransport activity in OK cells. Am J Physiol Ren Physiol 289:F154–F165.  https://doi.org/10.1152/ajprenal.00331.2004 CrossRefGoogle Scholar
  8. 8.
    Brown CM, Dalal RB, Hebert B, Digman MA, Horwitz AR, Gratton E (2008) Raster image correlation spectroscopy (RICS) for measuring fast protein dynamics and concentrations with a commercial laser scanning confocal microscope. J Microsc 229:78–91.  https://doi.org/10.1111/j.1365-2818.2007.01871.x CrossRefGoogle Scholar
  9. 9.
    Capuano P, Bacic D, Roos M, Gisler SM, Stange G, Biber J, Kaissling B, Weinman EJ, Shenolikar S, Wagner CA, Murer H (2007) Defective coupling of apical PTH receptors to phospholipase C prevents internalization of the Na+−phosphate cotransporter NaPi-IIa in Nherf1-deficient mice. Am J Phys Cell Physiol 292:C927–C934.  https://doi.org/10.1152/ajpcell.00126.2006 CrossRefGoogle Scholar
  10. 10.
    Celli A, Gratton E (2010) Dynamics of lipid domain formation: fluctuation analysis. Biochim Biophys Acta 1798:1368–1376.  https://doi.org/10.1016/j.bbamem.2009.12.002 CrossRefGoogle Scholar
  11. 11.
    Cheng L, Liang CT, Sacktor B (1983) Phosphate uptake by renal membrane vesicles of rabbits adapted to high and low phosphorus diets. Am J Phys 245:F175–F180.  https://doi.org/10.1152/ajprenal.1983.245.2.F175 Google Scholar
  12. 12.
    Chiu CL, Aguilar JS, Tsai CY, Wu G, Gratton E, Digman MA (2014) Nanoimaging of focal adhesion dynamics in 3D. PLoS One 9:e99896.  https://doi.org/10.1371/journal.pone.0099896 CrossRefGoogle Scholar
  13. 13.
    Custer M, Lotscher M, Biber J, Murer H, Kaissling B (1994) Expression of Na-P(i) cotransport in rat kidney: localization by RT-PCR and immunohistochemistry. Am J Phys 266:F767–F774.  https://doi.org/10.1152/ajprenal.1994.266.5.F767 Google Scholar
  14. 14.
    Dietrich C, Bagatolli LA, Volovyk ZN, Thompson NL, Levi M, Jacobson K, Gratton E (2001) Lipid rafts reconstituted in model membranes. Biophys J 80:1417–1428.  https://doi.org/10.1016/S0006-3495(01)76114-0 CrossRefGoogle Scholar
  15. 15.
    Dietrich C, Volovyk ZN, Levi M, Thompson NL, Jacobson K (2001) Partitioning of Thy-1, GM1, and cross-linked phospholipid analogs into lipid rafts reconstituted in supported model membrane monolayers. Proc Natl Acad Sci U S A 98:10642–10647.  https://doi.org/10.1073/pnas.191168698 CrossRefGoogle Scholar
  16. 16.
    Digman MA, Caiolfa VR, Zamai M, Gratton E (2008) The phasor approach to fluorescence lifetime imaging analysis. Biophys J 94:L14–L16.  https://doi.org/10.1529/biophysj.107.120154 CrossRefGoogle Scholar
  17. 17.
    Digman MA, Wiseman PW, Horwitz AR, Gratton E (2009) Detecting protein complexes in living cells from laser scanning confocal image sequences by the cross correlation raster image spectroscopy method. Biophys J 96:707–716.  https://doi.org/10.1016/j.bpj.2008.09.051 CrossRefGoogle Scholar
  18. 18.
    Digman MA, Stakic M, Gratton E (2013) Raster image correlation spectroscopy and number and brightness analysis. Methods Enzymol 518:121–144.  https://doi.org/10.1016/B978-0-12-388422-0.00006-6 CrossRefGoogle Scholar
  19. 19.
    Dobrinskikh E, Giral H, Caldas YA, Levi M, Doctor RB (2010) Shank2 redistributes with NaPilla during regulated endocytosis. Am J Phys Cell Physiol 299:C1324–C1334.  https://doi.org/10.1152/ajpcell.00183.2010 CrossRefGoogle Scholar
  20. 20.
    Dobrinskikh E, Lanzano L, Rachelson J, Cranston D, Moldovan R, Lei T, Gratton E, Doctor RB (2013) Shank2 contributes to the apical retention and intracellular redistribution of NaPiIIa in OK cells. Am J Phys Cell Physiol 304:C561–C573.  https://doi.org/10.1152/ajpcell.00189.2012 CrossRefGoogle Scholar
  21. 21.
    Forster IC, Hernando N, Biber J, Murer H (2006) Proximal tubular handling of phosphate: a molecular perspective. Kidney Int 70:1548–1559CrossRefGoogle Scholar
  22. 22.
    Giral H, Lanzano L, Caldas Y, Blaine J, Verlander JW, Lei T, Gratton E, Levi M (2011) Role of PDZK1 protein in apical membrane expression of renal sodium-coupled phosphate transporters. J Biol Chem 286:15032–15042.  https://doi.org/10.1074/jbc.M110.199752
  23. 23.
    Gisler SM, Stagljar I, Traebert M, Bacic D, Biber J, Murer H (2001) Interaction of the type IIa Na/Pi cotransporter with PDZ proteins. J Biol Chem 276:9206–9213.  https://doi.org/10.1074/jbc.M008745200 CrossRefGoogle Scholar
  24. 24.
    Gisler SM, Pribanic S, Bacic D, Forrer P, Gantenbein A, Sabourin LA, Tsuji A, Zhao ZS, Manser E, Biber J, Murer H (2003) PDZK1: I. a major scaffolder in brush borders of proximal tubular cells. Kidney Int 64:1733–1745.  https://doi.org/10.1046/j.1523-1755.2003.00266.x CrossRefGoogle Scholar
  25. 25.
    Golfetto O, Hinde E, Gratton E (2013) Laurdan fluorescence lifetime discriminates cholesterol content from changes in fluidity in living cell membranes. Biophys J 104:1238–1247.  https://doi.org/10.1016/j.bpj.2012.12.057 CrossRefGoogle Scholar
  26. 26.
    Golfetto O, Hinde E, Gratton E (2015) The Laurdan spectral phasor method to explore membrane micro-heterogeneity and lipid domains in live cells. Methods Mol Biol 1232:273–290.  https://doi.org/10.1007/978-1-4939-1752-519
  27. 27.
    Hammerman MR, Karl IE, Hruska KA (1980) Regulation of canine renal vesicle Pi transport by growth hormone and parathyroid hormone. Biochim Biophys Acta 603:322–335CrossRefGoogle Scholar
  28. 28.
    Hernando N, Deliot N, Gisler SM, Lederer E, Weinman EJ, Biber J, Murer H (2002) PDZ-domain interactions and apical expression of type IIa Na/P(i) cotransporters. Proc Natl Acad Sci U S A 99:11957–11962.  https://doi.org/10.1073/pnas.182412699 CrossRefGoogle Scholar
  29. 29.
    Hernando N, Wagner CA, Gisler SM, Biber J, Murer H (2004) PDZ proteins and proximal ion transport. Curr Opin Nephrol Hypertens 13:569–574CrossRefGoogle Scholar
  30. 30.
    Hernando N, Gisler SM, Pribanic S, Deliot N, Capuano P, Wagner CA, Moe OW, Biber J, Murer H (2005) NaPi-IIa and interacting partners. J Physiol 567:21–26.  https://doi.org/10.1113/jphysiol.2005.087049 CrossRefGoogle Scholar
  31. 31.
    Hinde E, Digman MA, Welch C, Hahn KM, Gratton E (2012) Biosensor Forster resonance energy transfer detection by the phasor approach to fluorescence lifetime imaging microscopy. Microsc Res Tech 75:271–281.  https://doi.org/10.1002/jemt.21054 CrossRefGoogle Scholar
  32. 32.
    Hinde E, Digman MA, Hahn KM, Gratton E (2013) Millisecond spatiotemporal dynamics of FRET biosensors by the pair correlation function and the phasor approach to FLIM. Proc Natl Acad Sci U S A 110:135–140.  https://doi.org/10.1073/pnas.1211882110 CrossRefGoogle Scholar
  33. 33.
    Inoue M, Digman MA, Cheng M, Breusegem SY, Halaihel N, Sorribas V, Mantulin WW, Gratton E, Barry NP, Levi M (2004) Partitioning of NaPi cotransporter in cholesterol-, sphingomyelin-, and glycosphingolipid-enriched membrane domains modulates NaPi protein diffusion, clustering, and activity. J Biol Chem 279:49160–49171.  https://doi.org/10.1074/jbc.M408942200 CrossRefGoogle Scholar
  34. 34.
    Jameson DM (1998) Gregorio weber, 1916-1997: a fluorescent lifetime. Biophys J 75:419–421.  https://doi.org/10.1016/S0006-3495(98)77528-9 CrossRefGoogle Scholar
  35. 35.
    Kempson SA, Dousa TP (1979) Phosphate transport across renal cortical brush border membrane vesicles from rats stabilized on a normal, high or low phosphate diet. Life Sci 24:881–887CrossRefGoogle Scholar
  36. 36.
    Kempson SA, Lotscher M, Kaissling B, Biber J, Murer H, Levi M (1995) Parathyroid hormone action on phosphate transporter mRNA and protein in rat renal proximal tubules. Am J Phys 268:F784–F791.  https://doi.org/10.1152/ajprenal.1995.268.4.F784 Google Scholar
  37. 37.
    Keusch I, Traebert M, Lotscher M, Kaissling B, Murer H, Biber J (1998) Parathyroid hormone and dietary phosphate provoke a lysosomal routing of the proximal tubular Na/Pi-cotransporter type II. Kidney Int 54:1224–1232.  https://doi.org/10.1046/j.1523-1755.1998.00115.x CrossRefGoogle Scholar
  38. 38.
    Lanzano L, Digman MA, Fwu P, Giral H, Levi M, Gratton E (2011) Nanometer-scale imaging by the modulation tracking method. J Biophotonics 4:415–424.  https://doi.org/10.1002/jbio.201100002 CrossRefGoogle Scholar
  39. 39.
    Lanzano L, Lei T, Okamura K, Giral H, Caldas Y, Masihzadeh O, Gratton E, Levi M, Blaine J (2011) Differential modulation of the molecular dynamics of the type IIa and IIc sodium phosphate cotransporters by parathyroid hormone. Am J Phys Cell Physiol 301:C850–C861.  https://doi.org/10.1152/ajpcell.00412.2010 CrossRefGoogle Scholar
  40. 40.
    Levi M, Jameson DM, van der Meer BW (1989) Role of BBM lipid composition and fluidity in impaired renal Pi transport in aged rat. Am J Phys 256:F85–F94.  https://doi.org/10.1152/ajprenal.1989.256.1.F85 Google Scholar
  41. 41.
    Levi M, Baird BM, Wilson PV (1990) Cholesterol modulates rat renal brush border membrane phosphate transport. J Clin Invest 85:231–237.  https://doi.org/10.1172/JCI114417 CrossRefGoogle Scholar
  42. 42.
    Levi M, Wilson PV, Cooper OJ, Gratton E (1993) Lipid phases in renal brush border membranes revealed by Laurdan fluorescence. Photochem Photobiol 57:420–425CrossRefGoogle Scholar
  43. 43.
    Levi M, Lotscher M, Sorribas V, Custer M, Arar M, Kaissling B, Murer H, Biber J (1994) Cellular mechanisms of acute and chronic adaptation of rat renal P(i) transporter to alterations in dietary P(i). Am J Phys 267:F900–F908.  https://doi.org/10.1152/ajprenal.1994.267.5.F900 Google Scholar
  44. 44.
    Levi M, Shayman JA, Abe A, Gross SK, McCluer RH, Biber J, Murer H, Lotscher M, Cronin RE (1995) Dexamethasone modulates rat renal brush border membrane phosphate transporter mRNA and protein abundance and glycosphingolipid composition. J Clin Invest 96:207–216.  https://doi.org/10.1172/JCI118022 CrossRefGoogle Scholar
  45. 45.
    Levi M, Kempson SA, Lotscher M, Biber J, Murer H (1996) Molecular regulation of renal phosphate transport. J Membr Biol 154:1–9CrossRefGoogle Scholar
  46. 46.
    Lotscher M, Kaissling B, Biber J, Murer H, Levi M (1997) Role of microtubules in the rapid regulation of renal phosphate transport in response to acute alterations in dietary phosphate content. J Clin Invest 99:1302–1312.  https://doi.org/10.1172/JCI119289 CrossRefGoogle Scholar
  47. 47.
    Lotscher M, Scarpetta Y, Levi M, Halaihel N, Wang H, Zajicek HK, Biber J, Murer H, Kaissling B (1999) Rapid downregulation of rat renal Na/P(i) cotransporter in response to parathyroid hormone involves microtubule rearrangement. J Clin Invest 104:483–494.  https://doi.org/10.1172/JCI3208 CrossRefGoogle Scholar
  48. 48.
    Magagnin S, Werner A, Markovich D, Sorribas V, Stange G, Biber J, Murer H (1993) Expression cloning of human and rat renal cortex Na/Pi cotransport. Proc Natl Acad Sci U S A 90:5979–5983CrossRefGoogle Scholar
  49. 49.
    Mahon MJ, Donowitz M, Yun CC, Segre GV (2002) Na(+)/H(+ ) exchanger regulatory factor 2 directs parathyroid hormone 1 receptor signalling. Nature 417:858–861.  https://doi.org/10.1038/nature00816 CrossRefGoogle Scholar
  50. 50.
    Mahon MJ, Cole JA, Lederer ED, Segre GV (2003) Na+/H+ exchanger-regulatory factor 1 mediates inhibition of phosphate transport by parathyroid hormone and second messengers by acting at multiple sites in opossum kidney cells. Mol Endocrinol 17:2355–2364.  https://doi.org/10.1210/me.2003-0043 CrossRefGoogle Scholar
  51. 51.
    Malacrida L, Gratton E, Jameson DM (2015) Model-free methods to study membrane environmental probes: a comparison of the spectral phasor and generalized polarization approaches. Methods Appl Fluoresc 3:047001.  https://doi.org/10.1088/2050-6120/3/4/047001 CrossRefGoogle Scholar
  52. 52.
    Malacrida L, Jameson DM, Gratton E (2017) A multidimensional phasor approach reveals LAURDAN photophysics in NIH-3T3 cell membranes. Sci Rep 7:9215.  https://doi.org/10.1038/s41598-017-08564-z CrossRefGoogle Scholar
  53. 53.
    Mannstadt M, Juppner H, Gardella TJ (1999) Receptors for PTH and PTHrP: their biological importance and functional properties. Am J Phys 277:F665–F675CrossRefGoogle Scholar
  54. 54.
    McWilliams RR, Breusegem SY, Brodsky KF, Kim E, Levi M, Doctor RB (2005) Shank2E binds NaP(i) cotransporter at the apical membrane of proximal tubule cells. Am J Phys Cell Physiol 289:C1042–C1051.  https://doi.org/10.1152/ajpcell.00568.2004 CrossRefGoogle Scholar
  55. 55.
    Molitoris BA, Alfrey AC, Harris RA, Simon FR (1985) Renal apical membrane cholesterol and fluidity in regulation of phosphate transport. Am J Phys 249:F12–F19.  https://doi.org/10.1152/ajprenal.1985.249.1.F12 Google Scholar
  56. 56.
    Muff R, Fischer JA, Biber J, Murer H (1992) Parathyroid hormone receptors in control of proximal tubule function. Annu Rev Physiol 54:67–79.  https://doi.org/10.1146/annurev.ph.54.030192.000435 CrossRefGoogle Scholar
  57. 57.
    Murer H (1992) Homer smith award. Cellular mechanisms in proximal tubular Pi reabsorption: some answers and more questions. J Am Soc Nephrol 2:1649–1665Google Scholar
  58. 58.
    Murer H, Werner A, Reshkin S, Wuarin F, Biber J (1991) Cellular mechanisms in proximal tubular reabsorption of inorganic phosphate. Am J Phys 260:C885–C899.  https://doi.org/10.1152/ajpcell.1991.260.5.C885 CrossRefGoogle Scholar
  59. 59.
    Murer H, Lotscher M, Kaissling B, Levi M, Kempson SA, Biber J (1996) Renal brush border membrane Na/Pi-cotransport: molecular aspects in PTH-dependent and dietary regulation. Kidney Int 49:1769–1773CrossRefGoogle Scholar
  60. 60.
    Murer H, Hernando N, Forster I, Biber J (2000) Proximal tubular phosphate reabsorption: molecular mechanisms. Physiol Rev 80:1373–1409.  https://doi.org/10.1152/physrev.2000.80.4.1373 CrossRefGoogle Scholar
  61. 61.
    Ohkido I, Segawa H, Yanagida R, Nakamura M, Miyamoto K (2003) Cloning, gene structure and dietary regulation of the type-IIc Na/Pi cotransporter in the mouse kidney. Pflugers Arch 446:106–115.  https://doi.org/10.1007/s00424-003-1010-6 CrossRefGoogle Scholar
  62. 62.
    Parasassi T, Conti F, Gratton E (1986) Time-resolved fluorescence emission spectra of Laurdan in phospholipid vesicles by multifrequency phase and modulation fluorometry. Cell Mol Biol 32:103–108Google Scholar
  63. 63.
    Parasassi T, Gratton E, Yu WM, Wilson P, Levi M (1997) Two-photon fluorescence microscopy of Laurdan generalized polarization domains in model and natural membranes. Biophys J 72:2413–2429.  https://doi.org/10.1016/S0006-3495(97)78887-8 CrossRefGoogle Scholar
  64. 64.
    Parasassi T, Gratton E, Zajicek H, Levi M, Yu W (1999) Detecting membrane lipid microdomains by two-photon fluorescence microscopy. IEEE Eng Med Biol Mag 18:92–99CrossRefGoogle Scholar
  65. 65.
    Pfister MF, Ruf I, Stange G, Ziegler U, Lederer E, Biber J, Murer H (1998) Parathyroid hormone leads to the lysosomal degradation of the renal type II Na/Pi cotransporter. Proc Natl Acad Sci U S A 95:1909–1914CrossRefGoogle Scholar
  66. 66.
    Ranjit S, Lanzano L, Gratton E (2014) Mapping diffusion in a living cell via the phasor approach. Biophys J 107:2775–2785.  https://doi.org/10.1016/j.bpj.2014.08.041 CrossRefGoogle Scholar
  67. 67.
    Ranjit S, Malacrida L, Jameson DM, Gratton E (2018) Fit-free analysis of fluorescence lifetime imaging data using the phasor approach. Nat Protoc 13:1979–2004.  https://doi.org/10.1038/s41596-018-0026-5 CrossRefGoogle Scholar
  68. 68.
    Rossow MJ, Sasaki JM, Digman MA, Gratton E (2010) Raster image correlation spectroscopy in live cells. Nat Protoc 5:1761–1774.  https://doi.org/10.1038/nprot.2010.122 CrossRefGoogle Scholar
  69. 69.
    Ruan Q, Cheng MA, Levi M, Gratton E, Mantulin WW (2004) Spatial-temporal studies of membrane dynamics: scanning fluorescence correlation spectroscopy (SFCS). Biophys J 87:1260–1267.  https://doi.org/10.1529/biophysj.103.036483 CrossRefGoogle Scholar
  70. 70.
    Segawa H, Kaneko I, Takahashi A, Kuwahata M, Ito M, Ohkido I, Tatsumi S, Miyamoto K (2002) Growth-related renal type II Na/Pi cotransporter. J Biol Chem 277:19665–19672.  https://doi.org/10.1074/jbc.M200943200 CrossRefGoogle Scholar
  71. 71.
    Segawa H, Yamanaka S, Ito M, Kuwahata M, Shono M, Yamamoto T, Miyamoto K (2005) Internalization of renal type IIc Na-Pi cotransporter in response to a high-phosphate diet. Am J Physiol Ren Physiol 288:F587–F596.  https://doi.org/10.1152/ajprenal.00097.2004 CrossRefGoogle Scholar
  72. 72.
    Segawa H, Yamanaka S, Onitsuka A, Tomoe Y, Kuwahata M, Ito M, Taketani Y, Miyamoto K (2007) Parathyroid hormone-dependent endocytosis of renal type IIc Na-Pi cotransporter. Am J Physiol Ren Physiol 292:F395–F403.  https://doi.org/10.1152/ajprenal.00100.2006 CrossRefGoogle Scholar
  73. 73.
    Shenolikar S, Weinman EJ (2001) NHERF: targeting and trafficking membrane proteins. Am J Physiol Ren Physiol 280:F389–F395.  https://doi.org/10.1152/ajprenal.2001.280.3.F389 CrossRefGoogle Scholar
  74. 74.
    Shenolikar S, Voltz JW, Minkoff CM, Wade JB, Weinman EJ (2002) Targeted disruption of the mouse NHERF-1 gene promotes internalization of proximal tubule sodium-phosphate cotransporter type IIa and renal phosphate wasting. Proc Natl Acad Sci U S A 99:11470–11475.  https://doi.org/10.1073/pnas.162232699 CrossRefGoogle Scholar
  75. 75.
    Sorribas V, Lotscher M, Loffing J, Biber J, Kaissling B, Murer H, Levi M (1996) Cellular mechanisms of the age-related decrease in renal phosphate reabsorption. Kidney Int 50:855–863CrossRefGoogle Scholar
  76. 76.
    Stoll R, Kinne R, Murer H (1979) Effect of dietary phosphate intake on phosphate transport by isolated rat renal brush-border vesicles. Biochem J 180:465–470CrossRefGoogle Scholar
  77. 77.
    Traebert M, Roth J, Biber J, Murer H, Kaissling B (2000) Internalization of proximal tubular type II Na-P(i) cotransporter by PTH: immunogold electron microscopy. Am J Physiol Ren Physiol 278:F148–F154.  https://doi.org/10.1152/ajprenal.2000.278.1.F148 CrossRefGoogle Scholar
  78. 78.
    Traebert M, Volkl H, Biber J, Murer H, Kaissling B (2000) Luminal and contraluminal action of 1-34 and 3-34 PTH peptides on renal type IIa Na-P(i) cotransporter. Am J Physiol Ren Physiol 278:F792–F798.  https://doi.org/10.1152/ajprenal.2000.278.5.F792 CrossRefGoogle Scholar
  79. 79.
    Villa-Bellosta R, Barac-Nieto M, Breusegem SY, Barry NP, Levi M, Sorribas V (2008) Interactions of the growth-related, type IIc renal sodium/phosphate cotransporter with PDZ proteins. Kidney Int 73:456–464.  https://doi.org/10.1038/sj.ki.5002703 CrossRefGoogle Scholar
  80. 80.
    Villa-Bellosta R, Ravera S, Sorribas V, Stange G, Levi M, Murer H, Biber J, Forster IC (2009) The Na+-Pi cotransporter PiT-2 (SLC20A2) is expressed in the apical membrane of rat renal proximal tubules and regulated by dietary pi. Am J Physiol Ren Physiol 296:F691–F699.  https://doi.org/10.1152/ajprenal.90623.2008 CrossRefGoogle Scholar
  81. 81.
    Wade JB, Welling PA, Donowitz M, Shenolikar S, Weinman EJ (2001) Differential renal distribution of NHERF isoforms and their colocalization with NHE3, ezrin, and ROMK. Am J Phys Cell Physiol 280:C192–C198.  https://doi.org/10.1152/ajpcell.2001.280.1.C192 CrossRefGoogle Scholar
  82. 82.
    Wade JB, Liu J, Coleman RA, Cunningham R, Steplock DA, Lee-Kwon W, Pallone TL, Shenolikar S, Weinman EJ (2003) Localization and interaction of NHERF isoforms in the renal proximal tubule of the mouse. Am J Phys Cell Physiol 285:C1494–C1503.  https://doi.org/10.1152/ajpcell.00092.2003 CrossRefGoogle Scholar
  83. 83.
    Weinman EJ, Minkoff C, Shenolikar S (2000) Signal complex regulation of renal transport proteins: NHERF and regulation of NHE3 by PKA. Am J Physiol Ren Physiol 279:F393–F399.  https://doi.org/10.1152/ajprenal.2000.279.3.F393 CrossRefGoogle Scholar
  84. 84.
    Werner A, Kempson SA, Biber J, Murer H (1994) Increase of Na/Pi-cotransport encoding mRNA in response to low Pi diet in rat kidney cortex. J Biol Chem 269:6637–6639Google Scholar
  85. 85.
    Zajicek HK, Wang H, Puttaparthi K, Halaihel N, Markovich D, Shayman J, Beliveau R, Wilson P, Rogers T, Levi M (2001) Glycosphingolipids modulate renal phosphate transport in potassium deficiency. Kidney Int 60:694–704.  https://doi.org/10.1046/j.1523-1755.2001.060002694.x CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Biochemistry and Molecular and Cellular BiologyGeorgetown UniversityWashingtonUSA
  2. 2.Department of Biomedical Engineering, Laboratory for Fluorescence DynamicsUniversity of California at IrvineIrvineUSA

Personalised recommendations