Advertisement

A neural model of schemas and memory encoding

  • Tiffany HwuEmail author
  • Jeffrey L. Krichmar
Original Article
  • 99 Downloads

Abstract

The ability to rapidly assimilate new information is essential for survival in a dynamic environment. This requires experiences to be encoded alongside the contextual schemas in which they occur. Tse et al. (Science 316(5821):76–82, 2007) showed that new information matching a preexisting schema is learned rapidly. To better understand the neurobiological mechanisms for creating and maintaining schemas, we constructed a biologically plausible neural network to learn context in a spatial memory task. Our model suggests that this occurs through two processing streams of indexing and representation, in which the medial prefrontal cortex and hippocampus work together to index cortical activity. Additionally, our study shows how neuromodulation contributes to rapid encoding within consistent schemas. The level of abstraction of our model further provides a basis for creating context-dependent memories while preventing catastrophic forgetting in artificial neural networks.

Keywords

Memory consolidation Schemas Catastrophic forgetting Spatial navigation 

Notes

Acknowledgements

We thank the participants of the 2017 Telluride Neuromorphic Cognition Workshop, especially Xinyun Zou, Brent Komer, Georgios Detorakis, and Scott Koziol, who worked on a preliminary project leading to the creation of this model.

Supplementary material

422_2019_808_MOESM1_ESM.pdf (126 kb)
Supplementary material 1 (pdf 125 KB)

References

  1. Abraham WC, Robins A (2005) Memory retention-the synaptic stability versus plasticity dilemma. Trends Neurosci 28(2):73–78CrossRefGoogle Scholar
  2. Aston-Jones G, Cohen JD (2005) Adaptive gain and the role of the locus coeruleus-norepinephrine system in optimal performance. J Compar Neurol 493(1):99–110CrossRefGoogle Scholar
  3. Atherton LA, Dupret D, Mellor JR (2015) Memory trace replay: the shaping of memory consolidation by neuromodulation. Trends Neurosci 38(9):560–570CrossRefGoogle Scholar
  4. Baxter MG, Chiba AA (1999) Cognitive functions of the basal forebrain. Curr Opin Neurobiol 9(2):178–183CrossRefGoogle Scholar
  5. Berridge CW, Foote SL (1991) Effects of locus coeruleus activation on electroencephalographic activity in neocortex and hippocampus. J Neurosci 11(10):3135–3145CrossRefGoogle Scholar
  6. Birrell JM, Brown VJ (2000) Medial frontal cortex mediates perceptual attentional set shifting in the rat. J Neurosci 20(11):4320–4324CrossRefGoogle Scholar
  7. Detorakis G, Bartley T, Neftci E (2018) Contrastive hebbian learning with random feedback weights. arXiv preprint arXiv:1806.07406
  8. Eichenbaum H (2017) Prefrontal-hippocampal interactions in episodic memory. Nat Rev Neurosci 18(9):547CrossRefGoogle Scholar
  9. French RM (1999) Catastrophic forgetting in connectionist networks. Trends Cognit Sci 3(4):128–135CrossRefGoogle Scholar
  10. Hasselmo ME (1999) Neuromodulation: acetylcholine and memory consolidation. Trends Cognit Sci 3(9):351–359CrossRefGoogle Scholar
  11. Hawkins J, Ahmad S, Cui Y (2017) A theory of how columns in the neocortex enable learning the structure of the world. Front Neural Circuits 11:81CrossRefGoogle Scholar
  12. Jung MW, Wiener SI, McNaughton BL (1994) Comparison of spatial firing characteristics of units in dorsal and ventral hippocampus of the rat. J Neurosci 14(12):7347–7356CrossRefGoogle Scholar
  13. van Kesteren MT, Fernández G, Norris DG, Hermans EJ (2010) Persistent schema-dependent hippocampal-neocortical connectivity during memory encoding and postencoding rest in humans. Proc Natl Acad Sci 107(16):7550–7555CrossRefGoogle Scholar
  14. van Kesteren MT, Ruiter DJ, Fernández G, Henson RN (2012) How schema and novelty augment memory formation. Trends Nneurosci 35(4):211–219CrossRefGoogle Scholar
  15. Kirkpatrick J, Pascanu R, Rabinowitz N, Veness J, Desjardins G, Rusu AA, Milan K, Quan J, Ramalho T, Grabska-Barwinska A, et al (2017) Overcoming catastrophic forgetting in neural networks. In: Proceedings of the national academy of sciences, p 201611835Google Scholar
  16. Krichmar JL (2008) The neuromodulatory system: a framework for survival and adaptive behavior in a challenging world. Adapt Behav 16(6):385–399CrossRefGoogle Scholar
  17. Kumaran D, Hassabis D, McClelland JL (2016) What learning systems do intelligent agents need? complementary learning systems theory updated. Trends Cognit Sci 20(7):512–534CrossRefGoogle Scholar
  18. LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521(7553):436CrossRefGoogle Scholar
  19. Masse NY, Grant GD, Freedman DJ (2018) Alleviating catastrophic forgetting using context-dependent gating and synaptic stabilization. arXiv preprint arXiv:1802.01569
  20. Mattar MG, Daw ND (2018) Prioritized memory access explains planning and hippocampal replay. Nat Neurosci 21(11):1609CrossRefGoogle Scholar
  21. McClelland JL, McNaughton BL, O’Reilly RC (1995) Why there are complementary learning systems in the hippocampus and neocortex: insights from the successes and failures of connectionist models of learning and memory. Psychol Rev 102(3):419CrossRefGoogle Scholar
  22. Mermillod M, Bugaiska A, Bonin P (2013) The stability-plasticity dilemma: investigating the continuum from catastrophic forgetting to age-limited learning effects. Front Psychol 4:504CrossRefGoogle Scholar
  23. Movellan JR (1991) Contrastive Hebbian learning in the continuous Hopfield model. In: Connectionist models. Elsevier, pp 10–17Google Scholar
  24. Nakano S, Hattori M (2017) Reduction of catastrophic forgetting in multilayer neural networks trained by contrastive Hebbian learning with pseudorehearsal. In: 2017 IEEE 10th International Workshop on computational intelligence and applications (IWCIA). IEEE, pp 91–95Google Scholar
  25. Otmakhova N, Duzel E, Deutch AY, Lisman J (2013) The hippocampal-VTA loop: the role of novelty and motivation in controlling the entry of information into long-term memory. In: Intrinsically motivated learning in natural and artificial systems. Springer, pp 235–254Google Scholar
  26. Pfeiffer BE, Foster DJ (2013) Hippocampal place-cell sequences depict future paths to remembered goals. Nature 497(7447):74CrossRefGoogle Scholar
  27. Preston AR, Eichenbaum H (2013) Interplay of hippocampus and prefrontal cortex in memory. Curr Biol 23(17):R764–R773CrossRefGoogle Scholar
  28. Rumelhart DE, Hinton GE, Williams RJ (1986) Learning representations by back-propagating errors. Nature 323(6088):533CrossRefGoogle Scholar
  29. Smith DM, Mizumori SJ (2006) Hippocampal place cells, context, and episodic memory. Hippocampus 16(9):716–729CrossRefGoogle Scholar
  30. Soltoggio A, Stanley KO, Risi S (2017) Born to learn: the inspiration, progress, and future of evolved plastic artificial neural networks. arXiv preprint arXiv:1703.10371
  31. Teyler TJ, DiScenna P (1986) The hippocampal memory indexing theory. Behav Neurosci 100(2):147CrossRefGoogle Scholar
  32. Tse D, Langston RF, Kakeyama M, Bethus I, Spooner PA, Wood ER, Witter MP, Morris RG (2007) Schemas and memory consolidation. Science 316(5821):76–82CrossRefGoogle Scholar
  33. Tse D, Takeuchi T, Kakeyama M, Kajii Y, Okuno H, Tohyama C, Bito H, Morris RG (2011) Schema-dependent gene activation and memory encoding in neocortex. Science 333(6044):891–895CrossRefGoogle Scholar
  34. Wagatsuma A, Okuyama T, Sun C, Smith LM, Abe K, Tonegawa S (2018) Locus coeruleus input to hippocampal CA3 drives single-trial learning of a novel context. Proc Natl Acad Sci 115(2):E310–E316CrossRefGoogle Scholar
  35. Walling SG, Brown RA, Milway JS, Earle AG, Harley CW (2011) Selective tuning of hippocampal oscillations by phasic locus coeruleus activation in awake male rats. Hippocampus 21(11):1250–1262CrossRefGoogle Scholar
  36. Yu A, Dayan P (2005) Uncertainty, neuromodulation, and attention. Neuron 46(4):681–692CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Cognitive SciencesUniversity of California, IrvineIrvineUSA
  2. 2.HRL Laboratories, LLCMalibuUSA
  3. 3.Department of Computer ScienceUniversity of California, IrvineIrvineUSA

Personalised recommendations