Biological Cybernetics

, Volume 112, Issue 5, pp 427–444 | Cite as

A single retinal circuit model for multiple computations

  • Murat SağlamEmail author
  • Yuki HayashidaEmail author
Original Article


Vision is dependent on extracting intricate features of the visual information from the outside world, and complex visual computations begin to take place as soon as at the retinal level. In multiple studies on salamander retinas, the responses of a subtype of retinal ganglion cells, i.e., fast/biphasic-OFF ganglion cells, have been shown to be able to realize multiple functions, such as the segregation of a moving object from its background, motion anticipation, and rapid encoding of the spatial features of a new visual scene. For each of these visual functions, modeling approaches using extended linear–nonlinear cascade models suggest specific preceding retinal circuitries merging onto fast/biphasic-OFF ganglion cells. However, whether multiple visual functions can be accommodated together in a certain retinal circuitry and how specific mechanisms for each visual function interact with each other have not been investigated. Here, we propose a physiologically consistent, detailed computational model of the retinal circuit based on the spatiotemporal dynamics and connections of each class of retinal neurons to implement object motion sensitivity, motion anticipation, and rapid coding in the same circuit. Simulations suggest that multiple computations can be accommodated together, thereby implying that the fast/biphasic-OFF ganglion cell has potential to output a train of spikes carrying multiple pieces of information on distinct features of the visual stimuli.


Retinal circuitry Visual computations Ganglion cells Wide-field amacrine cells 

Supplementary material

422_2018_767_MOESM1_ESM.mp4 (16.8 mb)
Supplementary material 1 (MP4 17179 kb)
422_2018_767_MOESM2_ESM.m4v (2.3 mb)
Supplementary material 2 (M4 V 2392 kb)


  1. Ashmore JF, Copenhagen DR (1980) Different postsynaptic events in two types of retinal bipolar cell. Nature 288:84–86CrossRefPubMedCentralPubMedGoogle Scholar
  2. Baccus SA (2007) Timing and computation in inner retinal circuitry. Annu Rev Physiol 69:271–290CrossRefPubMedCentralPubMedGoogle Scholar
  3. Baccus SA, Meister M (2002) Fast and slow contrast adaptation in retinal circuitry. Neuron 36(5):909–919CrossRefPubMedCentralPubMedGoogle Scholar
  4. Baccus SA, Ölveczky BP, Manu M, Meister M (2008) A retinal circuit that computes object motion. J Neurosci 28:6807–6817CrossRefPubMedCentralPubMedGoogle Scholar
  5. Baden T, Berens P, Franke K, Rosón MR, Bethge M, Euler T (2016) The functional diversity of retinal ganglion cells in the mouse. Nature 529:345–350CrossRefPubMedCentralPubMedGoogle Scholar
  6. Barlow HB, Levick WR (1965) The mechanism of directionally selective units in rabbit’s retina. J Physiol (Lond) 178:477–504CrossRefGoogle Scholar
  7. Baylor DA, Fettiplace R (1977) Kinetics of synaptic transfer from receptors to ganglion cells in turtle retina. J Physiol (Lond) 271:425–448CrossRefGoogle Scholar
  8. Baylor DA, Fuortes MG, O’Bryan PM (1971) Receptive fields of cones in the retina of the turtle. J Physiol (Lond) 214:265–294CrossRefGoogle Scholar
  9. Berry MJ 2nd, Brivanlou IH, Jordan TA, Meister M (1999) Anticipation of moving stimuli by the retina. Nature 398:334–338CrossRefPubMedCentralPubMedGoogle Scholar
  10. Bloomfield SA, Volgyi B (2009) The diverse functional roles and regulation of neuronal gap junctions in the retina. Nat Rev Neurosci 10:495–506CrossRefPubMedCentralPubMedGoogle Scholar
  11. Brivanlou IH, Warland DK, Meister M (1998) Mechanisms of concerted firing among retinal ganglion cells. Neuron 20:527–539CrossRefPubMedCentralPubMedGoogle Scholar
  12. Burkhardt DA (2001) Light adaptation and contrast in the outer retina. Prog Brain Res 131:407–418CrossRefPubMedCentralPubMedGoogle Scholar
  13. Burkhardt DA (2011) Contrast processing by ON and OFF bipolar cells. Vis Neurosci 28:69–75CrossRefPubMedCentralPubMedGoogle Scholar
  14. Burkhardt DA, Fahey PK, Sikora MA (2007) Retinal bipolar cells: temporal filtering of signals from cone photoreceptors. Vis Neurosci 24:765–774CrossRefPubMedCentralPubMedGoogle Scholar
  15. Chase AM, Young ED (2007) First-spike latency information in single neurons increases when referenced to population onset. Proc Natl Acad Sci USA 104(12):5175–5180CrossRefPubMedCentralPubMedGoogle Scholar
  16. Chen EY, Marre O, Fisher C, Schwartz G, Levy J, da Silveira RA, Berry MJ (2013) Alert response to motion onset in the retina. J Neurosci 33(1):120–132CrossRefPubMedCentralPubMedGoogle Scholar
  17. Chichilnisky EJ (2001) A simple white noise analysis of neuronal light responses. Network 12:199–213CrossRefPubMedCentralPubMedGoogle Scholar
  18. Cook JE, Becker DL (1995) Gap junctions in the vertebrate retina. Microsc Res Tech 31:408–419CrossRefPubMedCentralPubMedGoogle Scholar
  19. Crevier DW, Meister M (1998) Synchronous period-doubling in flicker vision of salamander and man. J Neurophysiol 79:1869–1878CrossRefPubMedCentralPubMedGoogle Scholar
  20. Dacey DM (1999) Primate retina: cell types, circuits and color opponency. Prog Retin Eye Res 18:737–763CrossRefPubMedCentralPubMedGoogle Scholar
  21. Dacheux RF, Raviola E (1982) Horizontal cells in the retina of the rabbit. J Neurosci 2:1486–1493CrossRefPubMedCentralPubMedGoogle Scholar
  22. Dacheux RF, Raviola E (1986) The rod pathway in the rabbit retina: a depolarizing bipolar and amacrine cell. J Neurosci 6:331–345CrossRefPubMedCentralPubMedGoogle Scholar
  23. de Vries SE, Baccus SA, Meister M (2011) The projective field of a retinal amacrine cell. J Neurosci 31:8595–8604CrossRefPubMedCentralPubMedGoogle Scholar
  24. Fahey PK, Burkhardt DA (2003) Center-surround organization in bipolar cells: symmetry for opposing contrasts. Vis Neurosci 20:1–10CrossRefPubMedCentralPubMedGoogle Scholar
  25. Freed MA, Sterling P (1988) The ON-alpha ganglion cell of the cat retina and its presynaptic cell types. J Neurosci 8:2303–2320CrossRefPubMedCentralPubMedGoogle Scholar
  26. Gaudiano P (1994) Simulations of X and Y retinal ganglion cell behavior with a nonlinear push-pull model of spatiotemporal retinal processing. Vis Res 34:1767–1784CrossRefPubMedCentralPubMedGoogle Scholar
  27. Gollisch T, Meister M (2008a) Rapid neural coding in the retina with relative spike latencies. Science 319:1108–1111CrossRefPubMedCentralPubMedGoogle Scholar
  28. Gollisch T, Meister M (2008b) Modeling convergent ON and OFF pathways in the early visual system. Biol Cybern 99:263–278CrossRefPubMedCentralPubMedGoogle Scholar
  29. Gollisch T, Meister M (2010) Eye smarter than scientists believed: neural computations in circuits of the retina. Neuron 65:150–164CrossRefPubMedCentralPubMedGoogle Scholar
  30. Greschner M, Thiel A, Kretzberg J, Ammermüller J (2006) Complex spike-event pattern of transient On-OFF retinal ganglion cells. J Neurophysiol 96:2845–2856CrossRefPubMedCentralPubMedGoogle Scholar
  31. Gütig R, Gollisch T, Sompolinsky H, Meister M (2013) Computing complex visual features with retinal spike times. PLoS ONE 8(1):e53063CrossRefPubMedCentralPubMedGoogle Scholar
  32. Hare WA, Owen WG (1990) Spatial organization of the bipolar cell’s receptive field in the retina of the tiger salamander. J Physiol (Lond) 421:223–245CrossRefGoogle Scholar
  33. Herz AVM, Gollisch T, Machens CK, Jaeger D (2006) Modeling single-neuron dynamics and computations: a balance of detail and abstraction. Science 314:80–85CrossRefPubMedCentralPubMedGoogle Scholar
  34. Ibbotson M, Krekelberg B (2011) Visual perception and saccadic eye movements. Curr Opin Neurobiol 21(4):553–558CrossRefPubMedCentralPubMedGoogle Scholar
  35. Ishikane H, Gangi M, Honda S, Tachibana M (2005a) Synchronized retinal oscillations encode essential information for escape behavior in frogs. Nat Neurosci 8:1087–1095CrossRefPubMedCentralPubMedGoogle Scholar
  36. Ishikane H, Gangi M, Honda S, Tachibana M (2005b) Synchronized retinal oscillations encode essential information for escape behavior in frogs. Nat Neurosci 8(8):1087–1095CrossRefPubMedCentralPubMedGoogle Scholar
  37. Jacobs AL, Werblin FS (1998) Spatiotemporal patterns at the retinal output. J Neurophysiol 80(1):447–451CrossRefPubMedCentralPubMedGoogle Scholar
  38. Johnston J, Lagnado L (2015) General features of the retinal connectome determine the computation of motion anticipation. eLife 4:e06250CrossRefPubMedCentralGoogle Scholar
  39. Kaneko A (1970) Physiological and morphological identification of horizontal, bipolar and amacrine cells in goldfish retina. J Physiol (Lond) 207:623–633CrossRefGoogle Scholar
  40. Keat J, Reinagel P, Reid RC, Meister M (2001) Predicting every spike: a model for the responses of visual neurons. Neuron 30(3):803–817CrossRefPubMedCentralPubMedGoogle Scholar
  41. Kim KJ, Rieke F (2001) Temporal contrast adaptation in the input and output signals of salamander retinal ganglion cells. J Neurosci 21(1):287–299CrossRefPubMedCentralPubMedGoogle Scholar
  42. Korenberg MJ, Sakai HM, Naka K (1989) Dissection of the neuron network in the catfish inner retina. III. Interpretation of spike kernels. J Neurophysiol 61(6):1110–1120CrossRefPubMedCentralPubMedGoogle Scholar
  43. Lee SC, Hayashida Y, Ishida AT (2003) Availability of low-threshold Ca2+ current in retinal ganglion cells. J Neurophysiol 90(6):3888–3901CrossRefPubMedCentralPubMedGoogle Scholar
  44. Lin B, Masland RH (2006) Populations of wide-field amacrine cells in the mouse retina. J Comp Neurol 499:797–809CrossRefPubMedCentralPubMedGoogle Scholar
  45. Maguire G, Lukasiewicz P, Werblin F (1989) Amacrine cell interactions underlying the response to change in the tiger salamander retina. J Neurosci 9:726–735CrossRefPubMedCentralPubMedGoogle Scholar
  46. Munch TA, da Silveira RA, Siegert S, Viney TJ, Awatramani GB, Roska B (2009) Approach sensitivity in the retina processed by a multifunctional neural circuit. Nat Neurosci 12:1308–1316CrossRefPubMedCentralPubMedGoogle Scholar
  47. Ölveczky BP, Baccus SA, Meister M (2003) Segregation of object and background motion in the retina. Nature 423:401–408CrossRefPubMedCentralPubMedGoogle Scholar
  48. Pan ZH, Slaughter MM (1991) Control of retinal information coding by GABAB receptors. J Neurosci 11:1810–1821CrossRefPubMedCentralPubMedGoogle Scholar
  49. Panzeri S, Brunel N, Logothetis NK, Kayser C (2010) Sensory neural codes using multiplexed temporal scales. Trends Neurosci 33(3):111–120CrossRefPubMedCentralPubMedGoogle Scholar
  50. Paradiso MA, Meshi D, Pisarcik J, Levine S (2012) Eye movements reset visual perception. J Vis 12(13):11CrossRefPubMedCentralPubMedGoogle Scholar
  51. Perry VH, Cowey A (1984) Retinal ganglion cells that project to the superior colliculus and pretectum in the macaque monkey. Neuroscience 12:1125–1137CrossRefPubMedCentralPubMedGoogle Scholar
  52. Rieke F (2001) Temporal contrast adaptation in salamander bipolar cells. J Neurosci 21:9445–9454CrossRefPubMedCentralPubMedGoogle Scholar
  53. Roska B, Werblin F (2003) Rapid global shifts in natural scenes block spiking in specific ganglion cell types. Nat Neurosci 6:600–608CrossRefPubMedCentralPubMedGoogle Scholar
  54. Sağlam M, Hayashida Y, Murayama N (2009) A retinal circuit model accounting for wide-field amacrine cells. Cognit Neurodyn 3:25–32CrossRefGoogle Scholar
  55. Sakai HM, Naka K (1987a) Signal transmission in the catfish retina. IV. Transmission to ganglion cells. J Neurophysiol 58:1307–1328CrossRefPubMedCentralPubMedGoogle Scholar
  56. Sakai HM, Naka K (1987b) Signal transmission in the catfish retina. V. Sensitivity and circuit. J Neurophysiol 58:1329–1350CrossRefPubMedCentralPubMedGoogle Scholar
  57. Sakai HM, Naka K (1991) The messages in optic nerve fibers and their interpretation. Brain Res Rev 16(2):135–149CrossRefPubMedCentralPubMedGoogle Scholar
  58. Sakai HM, Naka K (1992) Response dynamics and receptive-field organization of catfish amacrine cells. J Neurophysiol 67:430–442CrossRefPubMedCentralPubMedGoogle Scholar
  59. Sanes JR, Masland RH (2015) The types of retinal ganglion cells: current status and implications for neuronal classification. Annu Rev Neurosci 38:221–246CrossRefPubMedCentralPubMedGoogle Scholar
  60. Schwartz G, Berry MJ 2nd (2008) Sophisticated temporal pattern recognition in retinal ganglion cells. J Neurophysiol 99:1787–1798CrossRefPubMedCentralPubMedGoogle Scholar
  61. Schwartz G, Taylor S, Fisher C, Harris R, Berry MJ (2007) Synchronized firing among retinal ganglion cells signals motion reversal. Neuron 55(6):958–969CrossRefPubMedCentralPubMedGoogle Scholar
  62. Segev R, Puchalla J, Berry MJ 2nd (2006) Functional organization of ganglion cells in the salamander retina. J Neurophysiol 95:2277–2292CrossRefPubMedCentralPubMedGoogle Scholar
  63. Strettoi E, Dacheux RF, Raviola E (1990) Synaptic connections of rod bipolar cells in the inner plexiform layer of the rabbit retina. J Comp Neurol 295:449–466CrossRefPubMedCentralPubMedGoogle Scholar
  64. Tabata T, Ishida AT (1996) Transient and sustained depolarization of retinal ganglion cells by Ih. J Neurophysiol 75(5):1932–1943CrossRefPubMedCentralPubMedGoogle Scholar
  65. Teeters J, Jacobs A, Werblin F (1997) How neural interactions form neural responses in the salamander retina. J Comput Neurosci 4:5–27CrossRefPubMedCentralPubMedGoogle Scholar
  66. Thiel A, Greschner M, Ammermüller J (2006) The temporal structure of transient ON/OFF ganglion cell responses and its relation to intra-retinal processing. J Comput Neurosci 21:131–151CrossRefPubMedCentralPubMedGoogle Scholar
  67. Thorpe S, Fize D, Marlot C (1996) Speed of processing in the human visual system. Nature 381:520–522CrossRefPubMedCentralGoogle Scholar
  68. Usrey WM, Alonso JM, Reid RC (2000) Synaptic interactions between thalamic inputs to simple cells in cat visual cortex. J Neurosci 20:5461–5467CrossRefPubMedCentralPubMedGoogle Scholar
  69. van Hateren JH, Ruttiger L, Sun H, Lee BB (2002) Processing of natural temporal stimuli by macaque retinal ganglion cells. J Neurosci 22:9945–9960CrossRefPubMedCentralPubMedGoogle Scholar
  70. Vaney DI (1991) Many diverse types of retinal neurons show tracer coupling when injected with biocytin or Neurobiotin. Neurosci Lett 125:187–190CrossRefPubMedCentralPubMedGoogle Scholar
  71. Volgyi B, Deans MR, Paul DL, Bloomfield SA (2004) Convergence and segregation of the multiple rod pathways in mammalian retina. J Neurosci 24:11182–11192CrossRefPubMedCentralPubMedGoogle Scholar
  72. Wässle H, Boycott BB (1991) Functional architecture of the mammalian retina. Physiol Rev 71:447–480CrossRefPubMedCentralPubMedGoogle Scholar
  73. Werblin FS, Copenhagen DR (1974) Control of retinal sensitivity. 3. Lateral interactions at the inner plexiform layer. J Gen Physiol 63:88–110CrossRefPubMedCentralPubMedGoogle Scholar
  74. Werblin FS, Dowling JE (1969) Organization of the retina of the mudpuppy, Necturus maculosus. II. Intracellular recording. J Neurophysiol 32:339–355CrossRefPubMedCentralPubMedGoogle Scholar
  75. Wu SM, Gao F, Maple BR (2000) Functional architecture of synapses in the inner retina: segregation of visual signals by stratification of bipolar cell axon terminals. J Neurosci 20:4462–4470CrossRefPubMedCentralPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Advanced AnalyticsSupply Chain Wizard LLCIstanbulTurkey
  2. 2.Graduate School of EngineeringOsaka UniversitySuitaJapan

Personalised recommendations