Advertisement

Is there an intermuscular relationship in voluntary activation capacities and contractile kinetics?

  • 45 Accesses

Abstract

Purpose

The force-generating capacities of human skeletal muscles are interrelated, highlighting a common construct of limb strength. This study aimed to further determine whether there is an intermuscular relationship in maximal voluntary activation capacities and contractile kinetics of human muscles.

Methods

Twenty-six young healthy individuals participated in this study. Isometric maximal voluntary contraction (MVC) torque, voluntary activation level (VAL), and doublet twitch contractile kinetics (contraction time and half-relaxation time) evoked by a paired supramaximal peripheral nerve stimulation at 100 Hz were obtained in elbow flexors, knee extensors, plantar flexors and dorsiflexors of the dominant limb.

Results

Peak MVC torque had significant positive correlations between all muscle group pairs (all P values < 0.01). A significant positive correlation for VAL was found only between knee extensors and plantar flexors (r = 0.60, P < 0.01). There were no significant correlations between all muscle group pairs for doublet twitch contraction time and doublet twitch half-relaxation time.

Discussion

These results show that there is a partial common construct of maximal voluntary activation capacities that only concerns muscle groups that have incomplete activation during MVC (i.e., knee extensors and plantar flexors). This suggests that the common construct of MVC strength between these two muscle groups is partly influenced by neural mechanisms. The lack of intermuscular relationship of contractile kinetics showed that there is no common construct of muscle contractile kinetics, as assessed in vivo by investigating the time-course of evoked doublet twitch contractions.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 199

This is the net price. Taxes to be calculated in checkout.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Abbreviations

MVC:

Maximal voluntary contraction

VAL:

Voluntary activation level

References

  1. Aboodarda SJ, Šambaher N, Millet GY, Behm DG (2017) Knee extensors neuromuscular fatigue changes the corticospinal pathway excitability in biceps brachii muscle. Neuroscience 340:477–486. https://doi.org/10.1016/j.neuroscience.2016.10.065

  2. Akagi R, Suzuki M, Kawaguchi E et al (2018) Muscle size–strength relationship including ultrasonographic echo intensity and voluntary activation level of a muscle group. Arch Gerontol Geriatr 75:185–190. https://doi.org/10.1016/J.ARCHGER.2017.12.012

  3. Allen GM, Gandevia SC, Neering IR et al (1994) Muscle performance, voluntary activation and perceived effort in normal subjects and patients with prior poliomyelitis. Brain 117:661–670. https://doi.org/10.1093/brain/117.4.661

  4. Allen GM, Gandevia SC, McKenzie DK (1995) Reliability of measurements of muscle strength and voluntary activation using twitch interpolation. Muscle Nerve 18:593–600. https://doi.org/10.1002/mus.880180605

  5. Baxter JR, Piazza SJ (2014) Plantar flexor moment arm and muscle volume predict torque-generating capacity in young men. J Appl Physiol 116:538–544. https://doi.org/10.1152/japplphysiol.01140.2013

  6. Baylor SM, Hollingworth S (2003) Sarcoplasmic reticulum calcium release compared in slow-twitch and fast-twitch fibres of mouse muscle. J Physiol 551:125–138. https://doi.org/10.1113/jphysiol.2003.041608

  7. Baylor SM, Hollingworth S (2012) Intracellular calcium movements during excitation–contraction coupling in mammalian slow-twitch and fast-twitch muscle fibers. J Gen Physiol 139:261–272. https://doi.org/10.1085/jgp.201210773

  8. Behm DG, St-Pierre DMM (1997) Effects of fatigue duration and muscle type on voluntary and evoked contractile properties. J Appl Physiol 82:1654–1661. https://doi.org/10.1152/jappl.1997.82.5.1654

  9. Behm DG, Whittle J, Button D, Power K (2002) Intermuscle differences in activation. Muscle Nerve 25:236–243. https://doi.org/10.1002/mus.10008

  10. Behrens M, Brown N, Bollinger R et al (2016) Relationship between muscle volume and contractile properties of the human knee extensors. Appl Physiol Nutr Metab 41:110–113. https://doi.org/10.1139/apnm-2015-0378

  11. Behrens M, Husmann F, Mau-Moeller A et al (2019) Neuromuscular properties of the human wrist flexors as a function of the wrist joint angle. Front Bioeng Biotechnol. https://doi.org/10.3389/fbioe.2019.00181

  12. Ben Othman A, Behm DG, Chaouachi A (2018) Evidence of homologous and heterologous effects after unilateral leg training in youth. Appl Physiol Nutr Metab 43:282–291. https://doi.org/10.1139/apnm-2017-0338

  13. Ben Othman A, Chaouachi A, Chaouachi MM et al (2019) Dominant and non-dominant leg press training induce similar contralateral and ipsilateral limb training adaptations with children. Appl Physiol Nutr Metabol. https://doi.org/10.1139/apnm-2018-0766

  14. Bilodeau M, Matthew D, Nichols JM et al (2001) Fatigue of elbow flexor muscles in younger and older adults. Muscle Nerve 24:98–106. https://doi.org/10.1002/1097-4598(200101)24:1%3c98:AID-MUS11%3e3.0.CO;2-D

  15. Bohannon RW (2008) Is it legitimate to characterize muscle strength using a limited number of measures? J Strength Cond Res 22:166–173. https://doi.org/10.1519/JSC.0b013e31815f993d

  16. Bohannon RW (2012) Are hand-grip and knee extension strength reflective of a common construct? Percept Mot Skills 114:514–518. https://doi.org/10.2466/03.26.PMS.114.2.514-518

  17. Bohannon RW, Magasi SR, Bubela DJ et al (2012) Grip and knee extension muscle strength reflect a common construct among adults. Muscle Nerve 46:555–558. https://doi.org/10.1002/mus.23350

  18. Bowden JL, Taylor JL, McNulty PA (2014) Voluntary activation is reduced in both the more-and less-affected upper limbs after unilateral stroke. Front Neurol 5:239. https://doi.org/10.3389/fneur.2014.00239

  19. Buchthal F, Schmalbruch H (1970) Contraction times and fibre types in intact human muscle. Acta Physiol Scand 79:435–452. https://doi.org/10.1111/j.1748-1716.1970.tb04744.x

  20. Cannon J, Kay D, Tarpenning KM, Marino FE (2007) Comparative effects of resistance training on peak isometric torque, muscle hypertrophy, voluntary activation and surface EMG between young and elderly women. Clin Physiol Funct Imaging 27:91–100. https://doi.org/10.1111/j.1475-097X.2007.00719.x

  21. Cattagni T, Merlet AN, Cornu C, Jubeau M (2017) H-reflex and M-wave recordings: effect of pressure application to the stimulation electrode on the assessment of evoked potentials and subject’s discomfort. Clin Physiol Funct Imaging. https://doi.org/10.1111/cpf.12431

  22. Cattagni T, Harnie J, Jubeau M et al (2018) Neural and muscular factors both contribute to plantar-flexor muscle weakness in older fallers. Exp Gerontol 112:127–134. https://doi.org/10.1016/j.exger.2018.09.011

  23. Chen L, Nelson DR, Zhao Y et al (2013) Relationship between muscle mass and muscle strength, and the impact of comorbidities: a population-based, cross-sectional study of older adults in the United States. BMC Geriatr 13:74. https://doi.org/10.1186/1471-2318-13-74

  24. Chung LH, Callahan DM, Kent-Braun JA (2007) Age-related resistance to skeletal muscle fatigue is preserved during ischemia. J Appl Physiol 103:1628–1635. https://doi.org/10.1152/japplphysiol.00320.2007

  25. d’Avella A, Bizzi E (2005) Shared and specific muscle synergies in natural motor behaviors. Proc Natl Acad Sci 102:3076–3081. https://doi.org/10.1073/pnas.0500199102

  26. Darling WG, Butler AJ (2013) Stimulation depends on muscle activation. Exp Brain Res 174:376–385. https://doi.org/10.1007/s00221-006-0468-9.Variability

  27. Doguet V, Rivière V, Guével A et al (2017) Specific joint angle dependency of voluntary activation during eccentric knee extensions. Muscle Nerve 56:750–758. https://doi.org/10.1002/mus.25515

  28. Field A (2009) Discovering statistics using SPSS (and Sex and Drugs and Rock “n” Roll). 3rd edn. Sage Publications, London

  29. Fitch S, McComas A (1985) Influence of human muscle length on fatigue. J Physiol 362:205–213

  30. Fowler WM, Gardner GW (1967) Quantitative strength measurements in muscular dystrophy. Arch Phys Med Rehabil 48:629–644

  31. Gandevia SC, Herbert RD, Leeper JB (1998) Voluntary activation of human elbow flexor muscles during maximal concentric contractions. J Physiol 512:595–602. https://doi.org/10.1111/j.1469-7793.1998.595be.x

  32. Gonzalez RV, Buchanan TS, Delp SL (1997) How muscle architecture and moment arms affect wrist flexion-extension moments. J Biomech 30:705–712. https://doi.org/10.1016/s0021-9290(97)00015-8

  33. Iles JF, Pardoe J (1999) Changes in transmission in the pathway of heteronymous spinal recurrent inhibition from soleus to quadriceps motor neurons during movement in man. Brain J Neurol 122(Pt 9):1757–1764

  34. Ivanenko YP, Poppele RE, Lacquaniti F (2004) Five basic muscle activation patterns account for muscle activity during human locomotion. J Physiol 556:267–282. https://doi.org/10.1113/jphysiol.2003.057174

  35. Jakobi JM, Rice CL (2002) Voluntary muscle activation varies with age and muscle group. J Appl Physiol 93:457–462. https://doi.org/10.1152/japplphysiol.00012.2002

  36. Kennedy A, Hug F, Sveistrup H, Guével A (2013) Fatiguing handgrip exercise alters maximal force-generating capacity of plantar-flexors. Eur J Appl Physiol 113:559–566. https://doi.org/10.1007/s00421-012-2462-1

  37. Khemlani MM, Carr JH, Crosbie WJ (1999) Muscle synergies and joint linkages in sit-to-stand under two initial foot positions. Clin Biomech 14:236–246. https://doi.org/10.1016/S0268-0033(98)00072-2

  38. Klass M, Baudry S, Duchateau J (2005) Aging does not affect voluntary activation of the ankle dorsiflexors during isometric, concentric, and eccentric contractions. J Appl Physiol 99:31–38. https://doi.org/10.1152/japplphysiol.01426.2004

  39. Klein CS, Rice CL, Marsh GD (2001) Normalized force, activation, and coactivation in the arm muscles of young and old men. J Appl Physiol 91:1341–1349

  40. Kluka V, Martin V, Vicencio SG et al (2015) Effect of muscle length on voluntary activation level in children and adults. Med Sci Sports Exerc 47:718–724. https://doi.org/10.1249/MSS.0000000000000463

  41. Knapik JJ, Ramos MU (1980) Isokinetic and isometric torque relationships in the human body. Arch Phys Med Rehabil 61:64–67

  42. Landin D, Thompson M, Reid M (2015) Knee and ankle joint angles influence the plantarflexion torque of the gastrocnemius. J Clin Med Res 7:602–606. https://doi.org/10.14740/jocmr2107w

  43. Lanza IR, Russ DW, Kent-Braun JA (2004) Age-related enhancement of fatigue resistance is evident in men during both isometric and dynamic tasks. J Appl Physiol 97:967–975. https://doi.org/10.1152/japplphysiol.01351.2003

  44. Lanza MB, Balshaw TG, Folland JP (2017) Do changes in neuromuscular activation contribute to the knee extensor angle–torque relationship? Exp Physiol 102:962–973. https://doi.org/10.1113/EP086343

  45. Leedham S, Dowling J (1995) Force-length, torque-angle and EMG-joint angle relationships of the human in vivo biceps brachii. Eur J Appl Physiol 70:421–426

  46. Lieber RL, Fridén J (2000) Functional and clinical significance of skeletal muscle architecture. Muscle Nerve 23:1647–1666. https://doi.org/10.1002/1097-4598(200011)23:11%3c1647:aid-mus1%3e3.0.co;2-m

  47. Maffiuletti NA, Aagaard P, Blazevich AJ et al (2016) Rate of force development: physiological and methodological considerations. Eur J Appl Physiol 116:1091–1116. https://doi.org/10.1007/s00421-016-3346-6

  48. Marsh E, Sale D, McComas AJ, Quinlan J (1981) Influence of joint position on ankle dorsiflexion in humans. J Appl Physiol Respir Environ Exerc Physiol 51:160–167

  49. Mau-Moeller A, Bruhn S, Bader R, Behrens M (2015) The relationship between lean mass and contractile properties of the quadriceps in elderly and young adults. Gerontology 61:350–354. https://doi.org/10.1159/000368656

  50. Mayfield DL, Cresswell AG, Lichtwark GA (2016) Effects of series elastic compliance on muscle force summation and the rate of force rise. J Exp Biol 219:3261–3270. https://doi.org/10.1242/jeb.142604

  51. Merlet AN, Cattagni T, Cornu C, Jubeau M (2018) Effect of knee angle on neuromuscular assessment of plantar flexor muscles: a reliability study. PLoS ONE 13:e0195220. https://doi.org/10.1371/journal.pone.0195220

  52. Merton PA (1954) Voluntary strength and fatigue. J Physiol 123:553–564

  53. Meunier S, Penicaud A, Pierrot-Deseilligny E, Rossi A (1990) Monosynaptic Ia excitation and recurrent inhibition from quadriceps to ankle flexors and extensors in man. J Physiol 423:661–675

  54. Meunier S, Pierrot-Deseilligny E, Simonetta-Moreau M (1994) Pattern of heteronymous recurrent inhibition in the human lower limb. Exp Brain Res 102:149–159

  55. Miyatake N, Miyachi M, Tabata I et al (2012) Relationship between muscle strength and anthropometric, body composition parameters in Japanese adolescents. Health 04:1–5. https://doi.org/10.4236/health.2012.41001

  56. Morita H, Shindo M, Yanagawa S et al (1995) Progressive decrease in heteronymous monosynaptic Ia facilitation with human ageing. Exp Brain Res 104:167–170

  57. Morse CI, Thom JM, Davis MG et al (2004) Reduced plantarflexor specific torque in the elderly is associated with a lower activation capacity. Eur J Appl Physiol 92:219–226. https://doi.org/10.1007/s00421-004-1056-y

  58. Mukaka MM (2012) Statistics corner: a guide to appropriate use of correlation coefficient in medical research. Malawi Med J 24:69–71

  59. Newman SA, Jones G, Newham DJ (2003) Quadriceps voluntary activation at different joint angles measured by two stimulation techniques. Eur J Appl Physiol 95:496–499. https://doi.org/10.1007/s00421-003-0836-0

  60. Neyroud D, Rüttimann J, Mannion AF et al (2013a) Comparison of neuromuscular adjustments associated with sustained isometric contractions of four different muscle groups. J Appl Physiol 114:1426–1434. https://doi.org/10.1152/japplphysiol.01539.2012

  61. Neyroud D, Vallotton A, Millet GY et al (2013b) The effect of muscle fatigue on stimulus intensity requirements for central and peripheral fatigue quantification. Eur J Appl Physiol 114:205–2015. https://doi.org/10.1007/s00421-013-2760-2

  62. Rantanen T, Era P, Kauppinen M, Heikkinen E (1994) Maximal isometric muscle strength and socioeconomic status, health, and physical activity in 75-year-old persons. J Aging Phys Act 2:206–220. https://doi.org/10.1123/japa.2.3.206

  63. Reed RL, Pearlmutter L, Yochum K et al (1991) The relationship between muscle mass and muscle strength in the elderly. J Am Geriatr Soc 39:555–561. https://doi.org/10.1111/j.1532-5415.1991.tb03592.x

  64. Rice CL, Vollmer TL, Bigland-Ritchie B (1992) Neuromuscular responses of patients with multiple sclerosis. Muscle Nerve 15:1123–1132. https://doi.org/10.1002/mus.880151011

  65. Ryan ED, Thompson BJ, Herda TJ et al (2011) The relationship between passive stiffness and evoked twitch properties: the influence of muscle CSA normalization. Physiol Meas 32:677–686. https://doi.org/10.1088/0967-3334/32/6/005

  66. Sale D, Quinlan J, Marsh E et al (1982) Influence of joint position on ankle plantarflexion in humans. J Appl Physiol 52:1636–1642

  67. Salviati G, Sorenson MM, Eastwood AB (1982) Calcium accumulation by the sarcoplasmic reticulum in two populations of chemically skinned human muscle fibers. Effects of calcium and cyclic AMP. J Gen Physiol 79:603–632

  68. Šambaher N, Aboodarda SJ, Behm DG (2016) Bilateral knee extensor fatigue modulates force and responsiveness of the corticospinal pathway in the non-fatigued, dominant elbow flexors. Front Hum Neurosci 10:18. https://doi.org/10.3389/fnhum.2016.00018

  69. Samuel D, Rowe P (2012) An investigation of the association between grip strength and hip and knee joint moments in older adults. Arch Gerontol Geriatr 54:357–360. https://doi.org/10.1016/J.ARCHGER.2011.03.009

  70. Shield A, Zhou S (2004) Assessing voluntary muscle activation with the twitch interpolation technique. Sports Med 34:253–267

  71. Singla D, Hussain ME (2018) Association between handgrip strength and back strength in adolescent and adult cricket players. Int J Adolesc Med Health. https://doi.org/10.1515/ijamh-2017-0177

  72. Spiteri T, Nimphius S, Hart NH et al (2014) Contribution of strength characteristics to change of direction and agility performance in female basketball athletes. J Strength Cond Res 28:2415–2423. https://doi.org/10.1519/JSC.0000000000000547

  73. Strojnik V, Komi PV (1998) Neuromuscular fatigue after maximal stretch-shortening cycle exercise. J Appl Physiol 84:344–350

  74. Suetta C, Hvid LG, Justesen L et al (2009) Effects of aging on human skeletal muscle after immobilization and retraining. J Appl Physiol 107:1172–1180. https://doi.org/10.1152/japplphysiol.00290.2009

  75. Takahashi J, Nishiyama T, Matsushima Y (2017) Does grip strength on the unaffected side of patients with hemiparetic stroke reflect the strength of other ipsilateral muscles? J Phys Ther Sci 29:64–66. https://doi.org/10.1589/jpts.29.64

  76. Vikne H, Gundersen K, Liestøl K et al (2012) Intermuscular relationship of human muscle fiber type proportions: slow leg muscles predict slow neck muscles. Muscle Nerve 45:527–535. https://doi.org/10.1002/mus.22315

  77. Vol S, Bedouet M, Gusto G et al (2011) Evaluating physical activity: the AQAP questionnaire and its interpretation software. Ann Phys Rehabil Med 54:478–495. https://doi.org/10.1016/j.rehab.2011.09.001

  78. Wakeling JM, Horn T (2008) Neuromechanics of muscle synergies during cycling. J Neurophysiol 101:843–854. https://doi.org/10.1152/jn.90679.2008

  79. Westerblad H, Lännergren J, Allen DG (1997) Slowed relaxation in fatigued skeletal muscle fibers of Xenopus and Mouse. Contribution of [Ca2+]i and cross-bridges. J Gen Physiol 109:385–399

Download references

Author information

TC, MJ and CC conceived and designed research. EH and TC conducted experiments. EH analyzed data. EH and TC wrote the manuscript. All authors read and approved the manuscript.

Correspondence to Thomas Cattagni.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by Toshio Moritani.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hucteau, E., Jubeau, M., Cornu, C. et al. Is there an intermuscular relationship in voluntary activation capacities and contractile kinetics?. Eur J Appl Physiol (2020) doi:10.1007/s00421-019-04299-z

Download citation

Keywords

  • Maximal voluntary contraction
  • Voluntary activation
  • Twitch
  • Plantar flexors
  • Dorsiflexors
  • Knee extensors
  • Elbow flexors