Impact of a 10 km running trial on eryptosis, red blood cell rheology, and electrophysiology in endurance trained athletes: a pilot study

  • Elie Nader
  • David Monedero
  • Mélanie Robert
  • Sarah Skinner
  • Emeric Stauffer
  • Agnès Cibiel
  • Michèle Germain
  • Jules Hugonnet
  • Alexander Scheer
  • Philippe Joly
  • Céline Renoux
  • Philippe ConnesEmail author
  • Stéphane Égée
Original Article



Blood rheology is a key determinant of blood flow and tissue perfusion. There are still large discrepancies regarding the effects of an acute running exercise on blood rheological properties and red blood cell (RBC) physiology. We investigated the effect of a 10 km running trial on markers of blood rheology and RBC physiology in endurance trained athletes.


Blood was sampled before and after the exercise to measure lactate and glucose, hematological and hemorheological parameters (blood viscosity, RBC deformability, and aggregation), eryptosis markers (phosphatidylserine and CD47 exposure, RBC reactive oxygen species), RBC-derived microparticles (RBC-MPs), and RBC electrophysiological activity. Weight was measured before and after exercise. Peripheral oxygen saturation and heart rate were monitored before and during the trial.


Blood lactate and glucose levels increased after exercise and subjects significantly lost weight. All athletes experienced a significant fall in oxygen saturation. Mean corpuscular volume (MCV) was increased from 95.1 ± 3.2 to 96.0 ± 3.3 and mean corpuscular hemoglobin concentration (MCHC) decreased after exercise suggesting a slight RBC rehydration. Exercise increased RBC deformability from 0.344 ± 0.04 to 0.378 ± 0.07, decreased RBC aggregates strength and blood viscosity, while hematocrit (Hct) remained unaffected. While RBC electrophysiological recording suggested a modulation in RBC calcium content and/or chloride conductance, eryptosis markers and RBC-MPs were not modified by the exercise.


A 10 km acute running exercise had no effect on RBC senescence and membrane blebbing. In contrast, this exercise increased RBC deformability, probably through rehydration process which resulted in a decrease in blood viscosity.


Running exercise Red blood cell Rheology Eryptosis Microparticles 





Carbonyl cyanide m-chlorophenylhydrazone


Elongation index






Heart rate


Red blood cell maximum hyperpolarization


Maximal aerobic speed


Mean corpuscular hemoglobin


Mean corpuscular hemoglobin concentration


Mean corpuscular volume


Median fluorescence intensity




Not significant






Red blood cells


Reactive oxygen species


Room temperature


Peripheral oxygen saturation


Surface to volume ratio


Membrane potential

VO2 max

Maximal oxygen consumption


White blood cells


Author contributions

All the authors approved the final version of the manuscript. EN, PC, DM, SE, MR, SS performed research, analyzed the data, and wrote the manuscript. ES, JH, and MG performed research. CR, PJ, AC, and AS edited the manuscript.


No funding was received for this study.

Compliance with ethical standards

Conflict of interest

None of the authors have any conflict of interest.


  1. Baskurt OK, Meiselman HJ (2003) Blood rheology and hemodynamics. Semin Thromb Hemost 29(5):435–450. CrossRefPubMedGoogle Scholar
  2. Baskurt OK, Temiz A, Meiselman HJ (1998) Effect of superoxide anions on red blood cell rheologic properties. Free Radic Biol Med 24(1):102–110CrossRefGoogle Scholar
  3. Baskurt OK, Yalcin O, Meiselman HJ (2004) Hemorheology and vascular control mechanisms. Clin Hemorheol Microcirc 30(3–4):169–178PubMedGoogle Scholar
  4. Baskurt OK, Boynard M, Cokelet GC, Connes P, Cooke BM, Forconi S, Liao F, Hardeman MR, Jung F, Meiselman HJ, Nash G, Nemeth N, Neu B, Sandhagen B, Shin S, Thurston G, Wautier JL, International Expert Panel for Standardization of Hemorheological M (2009) New guidelines for hemorheological laboratory techniques. Clin Hemorheol Microcirc 42(2):75–97. CrossRefPubMedGoogle Scholar
  5. Baunbaek M, Bennekou P (2008) Evidence for a random entry of Ca2 + into human red cells. Bioelectrochemistry 73(2):145–150. CrossRefPubMedGoogle Scholar
  6. Bennekou P, de Franceschi L, Pedersen O, Lian L, Asakura T, Evans G, Brugnara C, Christophersen P (2001) Treatment with NS3623, a novel Cl-conductance blocker, ameliorates erythrocyte dehydration in transgenic SAD mice: a possible new therapeutic approach for sickle cell disease. Blood 97(5):1451–1457CrossRefGoogle Scholar
  7. Cabrales P, Martini J, Intaglietta M, Tsai AG (2006) Blood viscosity maintains microvascular conditions during normovolemic anemia independent of blood oxygen-carrying capacity. Am J Physiol Heart Circ Physiol 291(2):H581–H590. CrossRefPubMedGoogle Scholar
  8. Cahalan SM, Lukacs V, Ranade SS, Chien S, Bandell M, Patapoutian A (2015) Piezo1 links mechanical forces to red blood cell volume. Elife. CrossRefPubMedPubMedCentralGoogle Scholar
  9. Chapman KR, D’Urzo A, Rebuck AS (1983) The accuracy and response characteristics of a simplified ear oximeter. Chest 83(6):860–864. CrossRefGoogle Scholar
  10. Chou SL, Huang YC, Fu TC, Hsu CC, Wang JS (2016) Cycling exercise training alleviates hypoxia-impaired erythrocyte rheology. Med Sci Sports Exerc 48(1):57–65. CrossRefPubMedGoogle Scholar
  11. Clark MR, Mohandas N, Shohet SB (1983) Osmotic gradient ektacytometry: comprehensive characterization of red cell volume and surface maintenance. Blood 61(5):899–910CrossRefGoogle Scholar
  12. Cokelet GR, Meiselman HJ (2007) Macro- and micro-rheological properties of blood. In: Baskurt OK, Hardeman MR, Rampling MW, Meiselman HJ (eds) Handbook of hemorheology and hemodynamics, pp 45–71. ISBN 978-1-58603-771-0Google Scholar
  13. Connes P, Bouix D, Py G, Caillaud C, Kippelen P, Brun JF, Varray A, Prefaut C, Mercier J (2004a) Does exercise-induced hypoxemia modify lactate influx into erythrocytes and hemorheological parameters in athletes? J Appl Physiol 97(3):1053–1058. CrossRefPubMedGoogle Scholar
  14. Connes P, Bouix D, Py G, Prefaut C, Mercier J, Brun JF, Caillaud C (2004b) Opposite effects of in vitro lactate on erythrocyte deformability in athletes and untrained subjects. Clin Hemorheol Microcirc 31(4):311–318PubMedGoogle Scholar
  15. Connes P, Frank S, Martin C, Shin S, Aufradet E, Sunoo S, Klara B, Raynaud de Mauverger E, Romana M, Messonnier L, Kang J, Varlet-Marie E, Feasson L, Hardy-Dessources MD, Wilhelm B, Brun JF (2010) New fundamental and applied mechanisms in exercise hemorheology. Clin Hemorheol Microcirc 45(2–4):131–141. CrossRefPubMedGoogle Scholar
  16. Connes P, Pichon A, Hardy-Dessources MD, Waltz X, Lamarre Y, Simmonds MJ, Tripette J (2012) Blood viscosity and hemodynamics during exercise. Clin Hemorheol Microcirc 51(2):101–109. CrossRefPubMedGoogle Scholar
  17. Connes P, Simmonds MJ, Brun JF, Baskurt OK (2013) Exercise hemorheology: classical data, recent findings and unresolved issues. Clin Hemorheol Microcirc 53(1–2):187–199. CrossRefPubMedGoogle Scholar
  18. Connes P, Lamarre Y, Waltz X, Ballas SK, Lemonne N, Etienne-Julan M, Hue O, Hardy-Dessources MD, Romana M (2014) Haemolysis and abnormal haemorheology in sickle cell anaemia. Br J Haematol 165(4):564–572. CrossRefPubMedGoogle Scholar
  19. El-Sayed MS, Ali N, El-Sayed Ali Z (2005) Haemorheology in exercise and training. Sports Med 35(8):649–670CrossRefGoogle Scholar
  20. Gay F, Aguera K, Senechal K, Tainturier A, Berlier W, Maucort-Boulch D, Honnorat J, Horand F, Godfrin Y, Bourgeaux V (2017) Methionine tumor starvation by erythrocyte-encapsulated methionine gamma-lyase activity controlled with per os vitamin B6. Cancer Med 6(6):1437–1452. CrossRefPubMedCentralGoogle Scholar
  21. Hakim TS (1988) Erythrocyte deformability and segmental pulmonary vascular resistance: osmolarity and heat treatment. J Appl Physiol 65(4):1634–1641CrossRefGoogle Scholar
  22. Hierso R, Waltz X, Mora P, Romana M, Lemonne N, Connes P, Hardy-Dessources MD (2014) Effects of oxidative stress on red blood cell rheology in sickle cell patients. Br J Haematol 166(4):601–606. CrossRefPubMedGoogle Scholar
  23. Juel C, Hellsten Y, Saltin B, Bangsbo J (1999) Potassium fluxes in contracting human skeletal muscle and red blood cells. Am J Physiol 276(1):R184–R188. CrossRefPubMedGoogle Scholar
  24. Kuchel PW, Benga G (2005) Why does the mammalian red blood cell have aquaporins? Biosystems 82(2):189–196. CrossRefPubMedGoogle Scholar
  25. Lang E, Lang F (2015) Mechanisms and pathophysiological significance of eryptosis, the suicidal erythrocyte death. Semin Cell Dev Biol 39:35–42. CrossRefPubMedGoogle Scholar
  26. Macey RI, Adorante JS, Orme FW (1978) Erythrocyte membrane potentials determined by hydrogen ion distribution. Biochim Biophys Acta 512(2):284–295CrossRefGoogle Scholar
  27. Makhro A, Haider T, Wang J, Bogdanov N, Steffen P, Wagner C, Meyer T, Gassmann M, Hecksteden A, Kaestner L, Bogdanova A (2016) Comparing the impact of an acute exercise bout on plasma amino acid composition, intraerythrocytic Ca(2 +) handling, and red cell function in athletes and untrained subjects. Cell Calcium 60(4):235–244. CrossRefPubMedGoogle Scholar
  28. Mao TY, Fu LL, Wang JS (2011) Hypoxic exercise training causes erythrocyte senescence and rheological dysfunction by depressed Gardos channel activity. J Appl Physiol 111(2):382–391. CrossRefPubMedGoogle Scholar
  29. McKelvie RS, Lindinger MI, Heigenhauser GJ, Jones NL (1991) Contribution of erythrocytes to the control of the electrolyte changes of exercise. Can J Physiol Pharmacol 69(7):984–993. CrossRefPubMedGoogle Scholar
  30. Moersdorf D, Egee S, Hahn C, Hanf B, Ellory C, Thomas S, Bernhardt I (2013) Transmembrane potential of red blood cells under low ionic strength conditions. Cell Physiol Biochem 31(6):875–882. CrossRefPubMedGoogle Scholar
  31. Nader E, Guillot N, Lavorel L, Hancco I, Fort R, Stauffer E, Renoux C, Joly P, Germain M, Connes P (2018) Eryptosis and hemorheological responses to maximal exercise in athletes: comparison between running and cycling. Scand J Med Sci Sports 28(5):1532–1540. CrossRefPubMedGoogle Scholar
  32. Nebor D, Romana M, Santiago R, Vachiery N, Picot J, Broquere C, Chaar V, Doumdo L, Odievre MH, Benkerrou M, Elion J (2013) Fetal hemoglobin and hydroxycarbamide modulate both plasma concentration and cellular origin of circulating microparticles in sickle cell anemia children. Haematologica 98(6):862–867. CrossRefPubMedPubMedCentralGoogle Scholar
  33. Neuhaus D, Gaehtgens P (1994) Haemorrheology and long term exercise. Sports Med 18(1):10–21. CrossRefPubMedGoogle Scholar
  34. Neuhaus D, Behn C, Gaehtgens P (1992) Haemorheology and exercise: intrinsic flow properties of blood in marathon running. Int J Sports Med 13(7):506–511. CrossRefPubMedGoogle Scholar
  35. Nielsen HB (2003) Arterial desaturation during exercise in man: implication for O2 uptake and work capacity. Scand J Med Sci Sports 13(6):339–358CrossRefGoogle Scholar
  36. Parrow NL, Violet PC, Tu H, Nichols J, Pittman CA, Fitzhugh C, Fleming RE, Mohandas N, Tisdale JF, Levine M (2018) Measuring deformability and red cell heterogeneity in blood by ektacytometry. J Vis Exp. CrossRefPubMedPubMedCentralGoogle Scholar
  37. Parthasarathi K, Lipowsky HH (1999a) Capillary recruitment in response to tissue hypoxia and its dependence on red blood cell deformability. Am J Physiol 277(6):H2145–H2157. CrossRefPubMedGoogle Scholar
  38. Parthasarathi K, Lipowsky HH (1999b) Capillary recruitment in response to tissue hypoxia and its dependence on red blood cell deformability. Am J Physiol 277(6 Pt 2):H2145–H2157PubMedGoogle Scholar
  39. Prefaut C, Durand F, Mucci P, Caillaud C (2000) Exercise-induced arterial hypoxaemia in athletes: a review. Sports Med 30(1):47–61CrossRefGoogle Scholar
  40. Raj JU, Anderson J (1991) Comparison of dextran and hematocrit effects in the pulmonary microcirculation. Circ Res 68(4):1108–1116. CrossRefGoogle Scholar
  41. Reithmeier RA (2001) A membrane metabolon linking carbonic anhydrase with chloride/bicarbonate anion exchangers. Blood Cells Mol Dis 27(1):85–89. CrossRefPubMedGoogle Scholar
  42. Renoux C, Faivre M, Bessaa A, Da Costa L, Joly P, Gauthier A, Connes P (2019) Impact of surface-area-to-volume ratio, internal viscosity and membrane viscoelasticity on red blood cell deformability measured in isotonic condition. Sci Rep 9(1):6771. CrossRefPubMedPubMedCentralGoogle Scholar
  43. Robach P, Boisson RC, Vincent L, Lundby C, Moutereau S, Gergele L, Michel N, Duthil E, Feasson L, Millet GY (2014) Hemolysis induced by an extreme mountain ultra-marathon is not associated with a decrease in total red blood cell volume. Scand J Med Sci Sports 24(1):18–27. CrossRefPubMedGoogle Scholar
  44. Smith JA, Telford RD, Kolbuch-Braddon M, Weidemann MJ (1997) Lactate/H + uptake by red blood cells during exercise alters their physical properties. Eur J Appl Physiol Occup Physiol 75(1):54–61CrossRefGoogle Scholar
  45. Strobaek D, Teuber L, Jorgensen TD, Ahring PK, Kjaer K, Hansen RS, Olesen SP, Christophersen P, Skaaning-Jensen B (2004) Activation of human IK and SK Ca2 + -activated K + channels by NS309 (6,7-dichloro-1H-indole-2,3-dione 3-oxime). Biochim Biophys Acta 1665(1–2):1–5. CrossRefPubMedGoogle Scholar
  46. Suvorava T, Cortese-Krott MM (2018) Exercise-induced cardioprotection via eNOS: a putative role of red blood cell signaling. Curr Med Chem 25(34):4457–4474. CrossRefPubMedGoogle Scholar
  47. Tomschi F, Bizjak D, Bloch W, Latsch J, Predel HG, Grau M (2018) Deformability of different red blood cell populations and viscosity of differently trained young men in response to intensive and moderate running. Clin Hemorheol Microcirc 69(4):503–514. CrossRefPubMedGoogle Scholar
  48. Tripette J, Hardy-Dessources MD, Beltan E, Sanouiller A, Bangou J, Chalabi T, Chout R, Hedreville M, Broquere C, Nebor D, Dotzis G, Hue O, Connes P (2011) Endurance running trial in tropical environment: a blood rheological study. Clin Hemorheol Microcirc 47(4):261–268. CrossRefGoogle Scholar
  49. Tsai AG, Cabrales P, Intaglietta M (2005) Blood viscosity: a factor in tissue survival? Crit Care Med 33(7):1662–1663. CrossRefGoogle Scholar
  50. Waltz X, Hardy-Dessources MD, Lemonne N, Mougenel D, Lalanne-Mistrih ML, Lamarre Y, Tarer V, Tressieres B, Etienne-Julan M, Hue O, Connes P (2015) Is there a relationship between the hematocrit-to-viscosity ratio and microvascular oxygenation in brain and muscle? Clin Hemorheol Microcirc 59(1):37–43. CrossRefPubMedGoogle Scholar
  51. Zarychanski R, Schulz VP, Houston BL, Maksimova Y, Houston DS, Smith B, Rinehart J, Gallagher PG (2012) Mutations in the mechanotransduction protein PIEZO1 are associated with hereditary xerocytosis. Blood 120(9):1908–1915. CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Elie Nader
    • 1
    • 2
  • David Monedero
    • 2
    • 3
  • Mélanie Robert
    • 1
    • 2
    • 4
  • Sarah Skinner
    • 1
    • 2
  • Emeric Stauffer
    • 1
    • 2
    • 5
  • Agnès Cibiel
    • 4
  • Michèle Germain
    • 1
    • 2
    • 6
  • Jules Hugonnet
    • 6
  • Alexander Scheer
    • 4
  • Philippe Joly
    • 1
    • 2
    • 7
  • Céline Renoux
    • 1
    • 2
    • 7
  • Philippe Connes
    • 1
    • 2
    • 8
    Email author
  • Stéphane Égée
    • 2
    • 3
  1. 1.Laboratoire Interuniversitaire de Biologie de la Motricité (LIBM) EA7424, Team “Vascular Biology and Red Blood Cell”Université Claude Bernard Lyon 1, Université de LyonLyonFrance
  2. 2.Laboratoire d’Excellence du Globule Rouge (Labex GR-Ex)PRES SorbonneParisFrance
  3. 3.UMR 8227 CNRS-Sorbonne Université, Station BiologiqueRoscoff CedexFrance
  4. 4.Erytech PharmaLyonFrance
  5. 5.Centre de Médecine du Sommeil et des Maladies RespiratoiresHôpital Croix Rousse, Hospices Civils de LyonLyonFrance
  6. 6.Service d’Exploration Fonctionnelle RespiratoireHospices Civils de Lyon, Hôpital Croix RousseLyonFrance
  7. 7.Laboratoire de Biochimie et de Biologie Moléculaire, UF de Biochimie des Pathologies Érythrocytaires, Centre de Biologie et de Pathologie EstHospices Civils de LyonLyonFrance
  8. 8.Institut Universitaire de FranceParisFrance

Personalised recommendations