Advertisement

European Journal of Applied Physiology

, Volume 119, Issue 9, pp 2053–2064 | Cite as

Experimental knee-related pain enhances attentional interference on postural control

  • Eneida Yuri Suda
  • Rogerio Pessoto HirataEmail author
  • Thorvaldur Palsson
  • Nicolas Vuillerme
  • Isabel C. N. Sacco
  • Thomas Graven-Nielsen
Original Article

Abstract

Purpose

To quantify how postural stability is modified during experimental pain while performing different cognitively demanding tasks.

Methods

Sixteen healthy young adults participated in the experiment. Pain was induced by intramuscular injection of hypertonic saline solution (1 mL, 6%) in both vastus medialis and vastus lateralis muscles (0.9% isotonic saline was used as control). The participants stood barefoot in tandem position for 1 min on a force plate. Center of pressure (CoP) was recorded before and immediately after injections, while performing two cognitive tasks: (i) counting forwards by adding one; (ii) counting backwards by subtracting three. CoP variables—total area of displacement, velocity in anterior–posterior (AP-velocity) and medial–lateral (ML-velocity) directions, and CoP sample entropy in anterior–posterior and medial–lateral directions were displayed as the difference between the values obtained after and before each injection and compared between tasks and injections.

Results

CoP total area ( − 84.5 ± 145.5 vs. 28.9 ± 78.5 cm2) and ML-velocity ( − 1.71 ± 2.61 vs. 0.98 ± 1.93 cm/s) decreased after the painful injection vs. Control injection while counting forward (P < 0.05). CoP total area (12.8 ± 53.9 vs. − 84.5 ± 145.5 cm2), ML-velocity ( − 0.34 ± 1.92 vs. − 1.71 ± 2.61 cm/s) and AP-velocity (1.07 ± 2.35 vs. − 0.39 ± 1.82 cm/s) increased while counting backwards vs. forwards after the painful injection (P < 0.05).

Conclusion

Pain interfered with postural stability according to the type of cognitive task performed, suggesting that pain may occupy cognitive resources, potentially resulting in poorer balance performance.

Keywords

Postural stability Center of pressure Attention Distraction Pain 

Abbreviations

ANOVA

Analysis of variance

au

Arbitrary units

CoP

Center of pressure

SaEn

Sample entropy

SD

Standard deviation

VAS

Visual analogue scale

VM

Vastus medialis

VL

Vastus lateralis

Notes

Acknowledgements

Center for Neuroplasticity and Pain (CNAP) is supported by the Danish National Research Foundation (DNRF121). The authors thank the State of São Paulo Research Foundation (FAPESP) for the Suda scholarship (FAPESP 2017/15449–4, 2015/00214–6).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Andersson G, Hagman J, Talianzadeh R et al (2002) Effect of cognitive load on postural control. Brain Res Bull 58:135–139CrossRefGoogle Scholar
  2. Bair MJ, Robinson RL, Katon W, Kroenke K (2003) Depression and pain comorbidity. Arch Intern Med 163:2433.  https://doi.org/10.1001/archinte.163.20.2433 CrossRefGoogle Scholar
  3. Brauer SG, Broome A, Stone C et al (2004) Simplest tasks have greatest dual task interference with balance in brain injured adults. Hum Mov Sci 23:489–502.  https://doi.org/10.1016/j.humov.2004.08.020 CrossRefGoogle Scholar
  4. Bronstein AM, Buckwell D (1997) Automatic control of postural sway by visual motion parallax. Exp Brain Res 113:243–248.  https://doi.org/10.1007/BF02450322 CrossRefGoogle Scholar
  5. Day BL, Steiger MJ, Thompson PD, Marsden CD (1993) Effect of vision and stance width on human body motion when standing: implications for afferent control of lateral sway. J Physiol 469:479–499CrossRefGoogle Scholar
  6. Donker SF, Roerdink M, Greven AJ, Beek PJ (2007) Regularity of center-of-pressure trajectories depends on the amount of attention invested in postural control. Exp Brain Res 181:1–11.  https://doi.org/10.1007/s00221-007-0905-4 CrossRefGoogle Scholar
  7. Duarte M, Sternad D (2008) Complexity of human postural control in young and older adults during prolonged standing. Exp Brain Res 191:265–276.  https://doi.org/10.1007/s00221-008-1521-7 CrossRefGoogle Scholar
  8. Eccleston C, Crombez G (1999) Pain Demands attention : a cognitive-affective model of the interruptive function of pain. Psychol Bull 125(3):356–366CrossRefGoogle Scholar
  9. Era P, Sainio P, Koskinen S et al (2006) Postural balance in a random sample of 7979 subjects aged 30 years and over. Gerontology 52:204–213.  https://doi.org/10.1159/000093652 CrossRefGoogle Scholar
  10. Etemadi Y, Salavati M, Arab AM, Ghanavati T (2016) Balance recovery reactions in individuals with recurrent nonspecific low back pain: effect of attention. Gait Posture 44:123–127.  https://doi.org/10.1016/j.gaitpost.2015.11.017 CrossRefGoogle Scholar
  11. Falla D, Farina D, Dahl MK, Graven-Nielsen T (2006) Muscle pain induces task-dependent changes in cervical agonist/antagonist activity. J Appl Physiol 102:601–609.  https://doi.org/10.1152/japplphysiol.00602.2006 CrossRefGoogle Scholar
  12. Farina D (2003) Effect of Experimental Muscle Pain on Motor Unit Firing Rate and Conduction Velocity. J Neurophysiol 91:1250–1259.  https://doi.org/10.1152/jn.00620.2003 CrossRefGoogle Scholar
  13. Fewster KM, Gallagher KM, Howarth SH, Callaghan JP (2017) Low back pain development differentially influences centre of pressure regularity following prolonged standing. Gait Posture 1:1.  https://doi.org/10.1016/j.gaitpost.2017.06.005 Google Scholar
  14. Fraizer EV, Mitra S (2008) Methodological and interpretive issues in posture-cognition dual-tasking in upright stance. Gait Posture 27:271–279.  https://doi.org/10.1016/j.gaitpost.2007.04.002 CrossRefGoogle Scholar
  15. Graven-Nielsen T, Arendt-Nielsen L, Svensson P, Jensen TS (1997) Quantification of local and referred muscle pain in humans after sequential im injections of hypertonic saline. Pain 69:111–117CrossRefGoogle Scholar
  16. Ha H, Cho K, Lee W (2014) Reliability of the Good Balance System® for Postural sway measurement in poststroke patients. J Phys Ther Sci 26:121–124.  https://doi.org/10.1589/jpts.26.121 CrossRefGoogle Scholar
  17. Harbourne RT, Stergiou N (2003) Nonlinear analysis of the development of sitting postural control. Dev Psychobiol 42:368–377.  https://doi.org/10.1002/dev.10110 CrossRefGoogle Scholar
  18. Hirata RP, Arendt-Nielsen L, Graven-Nielsen T (2010) Experimental calf muscle pain attenuates the postural stability during quiet stance and perturbation. Clin Biomech 25:931–937.  https://doi.org/10.1016/j.clinbiomech.2010.06.001 CrossRefGoogle Scholar
  19. Hirata RP, Ervilha UF, Arendt-Nielsen L, Graven-Nielsen T (2011) Experimental muscle pain challenges the postural stability during quiet stance and unexpected posture perturbation. J Pain 12:911–919.  https://doi.org/10.1016/j.jpain.2011.02.356 CrossRefGoogle Scholar
  20. Hirata RP, Jørgensen TS, Rosager S et al (2013) Altered Visual and feet proprioceptive feedbacks during quiet standing increase postural sway in patients with severe knee osteoarthritis. PLoS ONE 8:1–8.  https://doi.org/10.1371/journal.pone.0071253 Google Scholar
  21. Huxhold O, Li SC, Schmiedek F, Lindenberger U (2006) Dual-tasking postural control: Aging and the effects of cognitive demand in conjunction with focus of attention. Brain Res Bull 69:294–305.  https://doi.org/10.1016/j.brainresbull.2006.01.002 CrossRefGoogle Scholar
  22. Kahneman D (1973) Attention and effort. Prentice-HallGoogle Scholar
  23. Kapoula Z, Lê TT (2006) Effects of distance and gaze position on postural stability in young and old subjects. Exp Brain Res 173:438–445.  https://doi.org/10.1007/s00221-006-0382-1 CrossRefGoogle Scholar
  24. Knoop J, Van Der Leeden M, Van Der Esch M et al (2012) Association of lower muscle strength with self-reported knee instability in osteoarthritis of the knee: Results from the Amsterdam Osteoarthritis Cohort. Arthritis Care Res 64:38–45.  https://doi.org/10.1002/acr.20597 CrossRefGoogle Scholar
  25. Kuczyński M, Szymańska M, Bieć E (2011) Dual-task effect on postural control in high-level competitive dancers. J Sports Sci 29:539–545.  https://doi.org/10.1080/02640414.2010.544046 CrossRefGoogle Scholar
  26. Larivière C, Butler H, Sullivan MJL, Fung J (2013) An exploratory study on the effect of pain interference and attentional interference on neuromuscular responses during rapid arm flexion movements. Clin J Pain 29:265–275.  https://doi.org/10.1097/AJP.0b013e318250ed6f CrossRefGoogle Scholar
  27. Lemaire P (1996) The Role of working memory resources in simple cognitive arithmetic. Eur J Cogn Psychol 8:73–104.  https://doi.org/10.1080/095414496383211 CrossRefGoogle Scholar
  28. Levinger P, Nagano H, Downie C et al (2016) Biomechanical balance response during induced falls under dual task conditions in people with knee osteoarthritis. Gait Posture 48:106–112.  https://doi.org/10.1016/j.gaitpost.2016.04.031 CrossRefGoogle Scholar
  29. Liston MB, Bergmann JH, Keating N et al (2014) Postural prioritization is differentially altered in healthy older compared to younger adults during visual and auditory coded spatial multitasking. Gait Posture 39:198–204.  https://doi.org/10.1016/j.gaitpost.2013.07.004 CrossRefGoogle Scholar
  30. Madeleine P, Nielsen M, Arendt-Nielsen L (2011) Characterization of postural control deficit in whiplash patients by means of linear and nonlinear analyses—a pilot study. J Electromyogr Kinesiol 21:291–297.  https://doi.org/10.1016/j.jelekin.2010.05.006 CrossRefGoogle Scholar
  31. Manor B, Costa MD, Hu K et al (2010) Physiological complexity and system adaptability: evidence from postural control dynamics of older adults. J Appl Physiol 109:1786–1791.  https://doi.org/10.1152/japplphysiol.00390.2010 CrossRefGoogle Scholar
  32. Matre D, Arendt-Neilsen L, Knardahl S (2002) Effects of localization and intensity of experimental muscle pain on ankle joint proprioception. Eur J Pain 6:245–260.  https://doi.org/10.1053/eujp.2002.0332 CrossRefGoogle Scholar
  33. Mazaheri M, Coenen P, Parnianpour M et al (2013) Low back pain and postural sway during quiet standing with and without sensory manipulation: a systematic review. Gait Posture 37:12–22.  https://doi.org/10.1016/j.gaitpost.2012.06.013 CrossRefGoogle Scholar
  34. Mazaheri M, Heidari E, Mostamand J et al (2014) Competing effects of pain and fear of pain on postural control in low back pain? Spine 39:E1518–E1523.  https://doi.org/10.1097/BRS.0000000000000605 CrossRefGoogle Scholar
  35. McWilliams LA, Cox BJ, Enns MW (2003) Mood and anxiety disorders associated with chronic pain: an examination in a nationally representative sample. Pain 106:127–133CrossRefGoogle Scholar
  36. Melzack R (1975) The McGill Pain Questionnaire: major properties and scoring methods. Pain 1:277–299CrossRefGoogle Scholar
  37. Mense S (1993) Nociception from skeletal muscle in relation to clinical muscle pain. Pain 54:241–289CrossRefGoogle Scholar
  38. Morasso PGP, Sanguineti V (2002) Ankle muscle stiffness alone cannot stabilize balance during quiet standing. J Neurophysiol 88:2157–2162.  https://doi.org/10.1152/jn.00719.2001 CrossRefGoogle Scholar
  39. Nebes RD, Butters MA, Houck PR et al (2001) Dual-task performance in depressed geriatric patients. Psychiatry Res 102:139–151.  https://doi.org/10.1016/S0165-1781(01)00244-X CrossRefGoogle Scholar
  40. Pellecchia GL (2003) Postural sway increases with attentional demands of concurrent cognitive task. Gait Posture 18:29–34.  https://doi.org/10.1016/S0966-6362(02)00138-8 CrossRefGoogle Scholar
  41. Peterka RJ (2003) Dynamic Regulation of sensorimotor integration in human postural control. J Neurophysiol 91:410–423.  https://doi.org/10.1152/jn.00516.2003 CrossRefGoogle Scholar
  42. Richman JS, Moorman JR (2000) Physiological time-series analysis using approximate entropy and sample entropy. Am J Physiol Heart Circ Physiol 278(6):H2039–H2049Google Scholar
  43. Schulte E, Ciubotariu A, Arendt-Nielsen L et al (2004) Experimental muscle pain increases trapezius muscle activity during sustained isometric contractions of arm muscles. Clin Neurophysiol 115:1767–1778.  https://doi.org/10.1016/j.clinph.2004.03.005 CrossRefGoogle Scholar
  44. Scoppa F, Capra R, Gallamini M, Shiffer R (2013) Clinical stabilometry standardization: basic definitions—acquisition interval—sampling frequency. Gait Posture 37:290–292.  https://doi.org/10.1016/j.gaitpost.2012.07.009 CrossRefGoogle Scholar
  45. Seminowicz DA, Davis KD (2007) Interactions of pain intensity and cognitive load: the brain stays on task. Cereb Cortex 17:1412–1422.  https://doi.org/10.1093/cercor/bhl052 CrossRefGoogle Scholar
  46. Sherafat S, Salavati M, Takamjani IE et al (2014) Effect of dual-tasking on dynamic postural control in individuals with and without nonspecific low back pain. J Manip Physiol Ther 37:170–179.  https://doi.org/10.1016/j.jmpt.2014.02.003 CrossRefGoogle Scholar
  47. Shiozawa S, Hirata RP, Graven-Nielsen T (2013) Reorganised anticipatory postural adjustments due to experimental lower extremity muscle pain. Hum Mov Sci 32:1239–1252.  https://doi.org/10.1016/j.humov.2013.01.009 CrossRefGoogle Scholar
  48. Siu KC, Woollacott MH (2007) Attentional demands of postural control: the ability to selectively allocate information-processing resources. Gait Posture 25:121–126.  https://doi.org/10.1016/j.gaitpost.2006.02.002 CrossRefGoogle Scholar
  49. Slifkin AB, Newell KM (1999) Noise, information transmission, and force variability. J Exp Psychol Hum Percept Perform 25:837–851.  https://doi.org/10.1037//0096-1523.25.3.837 CrossRefGoogle Scholar
  50. Søndergaard KHE, Olesen CG, Søndergaard EK et al (2010) The variability and complexity of sitting postural control are associated with discomfort. J Biomech 43:1997–2001.  https://doi.org/10.1016/j.jbiomech.2010.03.009 CrossRefGoogle Scholar
  51. Stins JF, Michielsen ME, Roerdink M, Beek PJ (2009) Sway regularity reflects attentional involvement in postural control: effects of expertise, vision and cognition. Gait Posture 30:106–109.  https://doi.org/10.1016/j.gaitpost.2009.04.001 CrossRefGoogle Scholar
  52. Swan L, Otani H, Loubert PV (2007) Reducing postural sway by manipulating the difficulty levels of a cognitive task and a balance task. Gait Posture 26:470–474.  https://doi.org/10.1016/j.gaitpost.2006.11.201 CrossRefGoogle Scholar
  53. Vaillancourt DE, Newell KM (2002) Changing complexity in human behavior and physiology through aging and disease. Neurobiol Aging 23:1–11.  https://doi.org/10.1016/S0197-4580(02)00052-0 CrossRefGoogle Scholar
  54. Vaillancourt DE, Newell KM (2000) The dynamics of resting and postural tremor in Parkinson’s disease. Clin Neurophysiol 111:2046–2056.  https://doi.org/10.1016/S1388-2457(00)00467-3 CrossRefGoogle Scholar
  55. Van Daele U, Hagman F, Truijen S et al (2010) Decrease in postural sway and trunk stiffness during cognitive dual-task in nonspecific chronic low back pain patients, performance compared to healthy control subjects. Spine 35:583–589.  https://doi.org/10.1097/BRS.0b013e3181b4fe4d CrossRefGoogle Scholar
  56. Van Ryckeghem DM, Van Damme S, Eccleston C, Crombez G (2018) The efficacy of attentional distraction and sensory monitoring in chronic pain patients: a meta-analysis. Clin Psychol Rev 59:16–29.  https://doi.org/10.1016/j.cpr.2017.10.008 CrossRefGoogle Scholar
  57. Veldhuijzen DS, Kenemans JL, De Bruin CM et al (2006) Pain and attention: attentional disruption or distraction? J Pain 7:11–20.  https://doi.org/10.1016/j.jpain.2005.06.003 CrossRefGoogle Scholar
  58. Voos MC, Piemonte MEP, Castelli LZ et al (2015) Association between Educational Status and dual-task performance in Young Adults. Percept Mot Skills 120:416–437.  https://doi.org/10.2466/22.PMS.120v18x8 CrossRefGoogle Scholar
  59. Vuillerme N, Nafati G (2007) How attentional focus on body sway affects postural control during quiet standing. Psychol Res 71:192–200.  https://doi.org/10.1007/s00426-005-0018-2 CrossRefGoogle Scholar
  60. Winter DA (1995) Human balance and posture control during standing and walking. Gait Posture 3(4):193–214CrossRefGoogle Scholar
  61. Woollacott M, Shumway-Cook A (2002) Attention and the control of posture and gait: a review of an emerging area of research. Gait Posture 16:1–14.  https://doi.org/10.1016/S0966-6362(01)00156-4 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Laboratory of Biomechanics of Human Movement, Department Physical Therapy, Speech and Occupational Therapy, School of MedicineUniversity of Sao PauloSão PauloBrazil
  2. 2.Department of Health Science and Technology, Faculty of Medicine, Center for Sensory Motor InteractionSMI, Aalborg UniversityÅlborgDenmark
  3. 3.University of Grenoble-Alpes, EA AGEISGrenobleFrance
  4. 4.Institut Universitaire de FranceParisFrance
  5. 5.Department of Health Science and Technology, Center for Neuroplasticity and Pain (CNAP)SMI, Aalborg UniversityÅlborgDenmark

Personalised recommendations