European Journal of Applied Physiology

, Volume 118, Issue 11, pp 2465–2476 | Cite as

Effect of 1-week betalain-rich beetroot concentrate supplementation on cycling performance and select physiological parameters

  • Petey W. Mumford
  • Wesley C. Kephart
  • Matthew A. Romero
  • Cody T. Haun
  • C. Brooks Mobley
  • Shelby C. Osburn
  • James C. Healy
  • Angelique N. Moore
  • David D. Pascoe
  • William C. Ruffin
  • Darren T. Beck
  • Jeffrey S. Martin
  • Michael D. Roberts
  • Kaelin C. YoungEmail author
Original Article



Betalains are indole-derived pigments found in beet root, and recent studies suggest that they may exert ergogenic effects. Herein, we examined if supplementation for 7 days with betalain-rich beetroot concentrate (BLN) improved cycling performance or altered hemodynamic and serum analytes prior to, during and following a cycling time trial (TT).


Twenty-eight trained male cyclists (29 ± 10 years, 77.3 ± 13.3 kg, and 3.03 ± 0.62 W/kg) performed a counterbalanced crossover study whereby BLN (100 mg/day) or placebo (PLA) supplementation occurred over 7 days with a 1-week washout between conditions. On the morning of day seven of each supplementation condition, participants consumed one final serving of BLN or PLA and performed a 30-min cycling TT with concurrent assessment of several physiological variables and blood markers.


BLN supplementation improved average absolute power compared to PLA (231.6 ± 36.2 vs. 225.3 ± 35.8 W, p = 0.050, d = 0.02). Average relative power, distance traveled, blood parameters (e.g., pH, lactate, glucose, NOx) and inflammatory markers (e.g., IL-6, IL-8, IL-10, TNFα) were not significantly different between conditions. BLN supplementation significantly improved exercise efficiency (W/ml/kg/min) in the last 5 min of the TT compared to PLA (p = 0.029, d = 0.45). Brachial artery blood flow in the BLN condition, immediately post-exercise, tended to be greater compared to PLA (p = 0.065, d = 0.32).


We report that 7 days of BLN supplementation modestly improves 30-min TT power output, exercise efficiency as well as post-exercise blood flow without increasing plasma NOx levels or altering blood markers of inflammation, oxidative stress, and/or hematopoiesis.


Betalains Exercise efficiency Blood flow Cycling 



Analysis of variance


Betalain-rich beetroot concentrate


Cardiac output




Flow-mediated dilation


Heart rate


Nitric oxide




Respiratory exchange ratio


Thiobarbituric acid reactive substances


Time trial



This study was funded by a contract awarded to Auburn University (MDR) and the Edward Via College of Osteopathic Medicine—Auburn Campus (KCY and JSM) from FutureCeuticals (Momence, IL USA). Contract monies were used for participant compensation and assay-related costs.

Author contributions

Conception and study design: MDR, KCY, JSM. Data collection: PWM, WCK, MAR, CTH, CBM, SCO, JCH, ANM, WCR, KCY. Data analysis: PMW, KCY, MDR, JSM. Manuscript preparation: PMW, MDR, KCY. All authors reviewed, edited and approved the manuscript.

Compliance with ethical standards

Conflict of interest

None of the authors have conflicts of interest to declare regarding the publication of these data.


  1. Albano C, Negro C, Tommasi N, Gerardi C, Mita G, Miceli A, De Bellis L, Blando F (2015) Betalains, phenols and antioxidant capacity in cactus pear [Opuntia ficus-indica (L.) Mill.] fruits from Apulia (South Italy) genotypes. Antioxidants (Basel) 4(2):269–280. CrossRefGoogle Scholar
  2. Allen DG, Lamb GD, Westerblad H (2008) Skeletal muscle fatigue: cellular mechanisms. Physiol Rev 88(1):287–332. PubMedCrossRefGoogle Scholar
  3. Bailey SJ, Winyard P, Vanhatalo A, Blackwell JR, Dimenna FJ, Wilkerson DP, Tarr J, Benjamin N, Jones AM (2009) Dietary nitrate supplementation reduces the O2 cost of low-intensity exercise and enhances tolerance to high-intensity exercise in humans. J Appl Physiol (Bethesda Md 1985) 107(4):1144–1155. CrossRefGoogle Scholar
  4. Barclay JK, Hansel M (1991) Free radicals may contribute to oxidative skeletal muscle fatigue. Can J Physiol Pharmacol 69(2):279–284PubMedCrossRefGoogle Scholar
  5. Brenner IK, Natale VM, Vasiliou P, Moldoveanu AI, Shek PN, Shephard RJ (1999) Impact of three different types of exercise on components of the inflammatory response. Eur J Appl Physiol Occup Physiol 80(5):452–460. PubMedCrossRefGoogle Scholar
  6. Burt DG, Twist C (2011) The effects of exercise-induced muscle damage on cycling time-trial performance. J Strength Cond Res 25(8):2185–2192. PubMedCrossRefGoogle Scholar
  7. Butera D, Tesoriere L, Di Gaudio F, Bongiorno A, Allegra M, Pintaudi AM, Kohen R, Livrea MA (2002) Antioxidant activities of sicilian prickly pear (Opuntia ficus-indica) fruit extracts and reducing properties of its betalains: betanin and indicaxanthin. J Agric Food Chem 50(23):6895–6901CrossRefGoogle Scholar
  8. Casa DJ, Armstrong LE, Hillman SK, Montain SJ, Reiff RV, Rich BS, Roberts WO, Stone JA (2000) National athletic trainers’ association position statement: fluid replacement for athletes. J Athl Train 35(2):212–224PubMedPubMedCentralGoogle Scholar
  9. Cermak NM, Gibala MJ, van Loon LJ (2012) Nitrate supplementation’s improvement of 10-km time-trial performance in trained cyclists. Int J Sport Nutr Exerc Metab 22(1):64–71PubMedCrossRefGoogle Scholar
  10. Cho J, Bing SJ, Kim A, Lee NH, Byeon SH, Kim GO, Jee Y (2017) Beetroot (Beta vulgaris) rescues mice from gamma-ray irradiation by accelerating hematopoiesis and curtailing immunosuppression. Pharm Biol 55(1):306–319. PubMedCrossRefGoogle Scholar
  11. Clifford T, Howatson G, West DJ, Stevenson EJ (2015) The potential benefits of red beetroot supplementation in health and disease. Nutrients 7(4):2801–2822. PubMedPubMedCentralCrossRefGoogle Scholar
  12. Clifford T, Constantinou CM, Keane KM, West DJ, Howatson G, Stevenson EJ (2017) The plasma bioavailability of nitrate and betanin from Beta vulgaris rubra in humans. Eur J Nutr 56(3):1245–1254. PubMedCrossRefGoogle Scholar
  13. Cordova Martinez A, Martorell Pons M, Sureda Gomila A, Tur Mari JA, Pons Biescas A (2015) Changes in circulating cytokines and markers of muscle damage in elite cyclists during a multi-stage competition. Clin Physiol Funct Imaging 35(5):351–358. PubMedCrossRefGoogle Scholar
  14. Criswell D, Powers S, Dodd S, Lawler J, Edwards W, Renshler K, Grinton S (1993) High intensity training-induced changes in skeletal muscle antioxidant enzyme activity. Med Sci Sports Exerc 25(10):1135–1140PubMedCrossRefGoogle Scholar
  15. Delgado-Vargas F, Jimenez AR, Paredes-Lopez O (2000) Natural pigments: carotenoids, anthocyanins, and betalains—characteristics, biosynthesis, processing, and stability. Crit Rev Food Sci Nutr 40(3):173–289. CrossRefGoogle Scholar
  16. Escribano J, Pedreño MA, García-Carmona F, Muñoz R (1998) Characterization of the antiradical activity of betalains from Beta vulgaris L. roots. Phytochem Anal 9(3):124–127CrossRefGoogle Scholar
  17. Gandia-Herrero F, Escribano J, Garcia-Carmona F (2009) The role of phenolic hydroxy groups in the free radical scavenging activity of betalains. J Nat Prod 72(6):1142–1146. PubMedCrossRefGoogle Scholar
  18. Gandia-Herrero F, Escribano J, Garcia-Carmona F (2010) Structural implications on color, fluorescence, and antiradical activity in betalains. Planta 232(2):449–460. PubMedCrossRefGoogle Scholar
  19. Haun CT, Kephart WC, Holland AM, Mobley CB, McCloskey AE, Shake JJ, Pascoe DD, Roberts MD, Martin JS (2016) Differential vascular reactivity responses acutely following ingestion of a nitrate rich red spinach extract. Eur J Appl Physiol 116(11–12):2267–2279. PubMedCrossRefGoogle Scholar
  20. Kanner J, Harel S, Granit R (2001) Betalains—a new class of dietary cationized antioxidants. J Agric Food Chem 49(11):5178–5185PubMedCrossRefGoogle Scholar
  21. Kephart WC, Wachs TD, Mac Thompson R, Brooks Mobley C, Fox CD, McDonald JR, Ferguson BS, Young KC, Nie B, Martin JS, Company JM, Pascoe DD, Arnold RD, Moon JR, Roberts MD (2016) Ten weeks of branched-chain amino acid supplementation improves select performance and immunological variables in trained cyclists. Amino Acids 48(3):779–789. PubMedCrossRefGoogle Scholar
  22. Kujala T, Loponen J, Pihlaja K (2001) Betalains and phenolics in red beetroot (Beta vulgaris) peel extracts: extraction and characterisation. Z Naturforsch C 56(5–6):343–348PubMedCrossRefGoogle Scholar
  23. Lansley KE, Winyard PG, Bailey SJ, Vanhatalo A, Wilkerson DP, Blackwell JR, Gilchrist M, Benjamin N, Jones AM (2011) Acute dietary nitrate supplementation improves cycling time trial performance. Med Sci Sports Exerc 43(6):1125–1131. PubMedCrossRefGoogle Scholar
  24. Lee CH, Wettasinghe M, Bolling BW, Ji LL, Parkin KL (2005) Betalains, phase II enzyme-inducing components from red beetroot (Beta vulgaris L.) extracts. Nutr Cancer 53(1):91–103. PubMedCrossRefGoogle Scholar
  25. Martinez RM, Longhi-Balbinot DT, Zarpelon AC, Staurengo-Ferrari L, Baracat MM, Georgetti SR, Sassonia RC, Verri WA Jr, Casagrande R (2015) Anti-inflammatory activity of betalain-rich dye of Beta vulgaris: effect on edema, leukocyte recruitment, superoxide anion and cytokine production. Arch Pharm Res 38(4):494–504. PubMedCrossRefGoogle Scholar
  26. Montenegro CF, Kwong DA, Minow ZA, Davis BA, Lozada CF, Casazza GA (2017) Betalain-rich concentrate supplementation improves exercise performance and recovery in competitive triathletes. Appl Physiol Nutr Metab 42(2):166–172. PubMedCrossRefGoogle Scholar
  27. Morici G, Zangla D, Santoro A, Pelosi E, Petrucci E, Gioia M, Bonanno A, Profita M, Bellia V, Testa U, Bonsignore MR (2005) Supramaximal exercise mobilizes hematopoietic progenitors and reticulocytes in athletes. Am J Physiol Regul Integr Comp Physiol 289(5):R1496–R1503. PubMedCrossRefGoogle Scholar
  28. Mumford PW, Tribby AC, Poole CN, Dalbo VJ, Scanlan AT, Moon JR, Roberts MD, Young KC (2016) Effect of caffeine on golf performance and fatigue during a competitive tournament. Med Sci Sports Exerc 48(1):132–138. PubMedCrossRefGoogle Scholar
  29. O’Neill CA, Stebbins CL, Bonigut S, Halliwell B, Longhurst JC (1996) Production of hydroxyl radicals in contracting skeletal muscle of cats. J Appl Physiol (Bethesda Md: 1985) 81(3):1197–1206. CrossRefGoogle Scholar
  30. Pedersen BK (2000) Exercise and cytokines. Immunol Cell Biol 78(5):532–535PubMedCrossRefGoogle Scholar
  31. Pedersen BK, Steensberg A, Fischer C, Keller C, Ostrowski K, Schjerling P (2001) Exercise and cytokines with particular focus on muscle-derived IL-6. Exerc Immunol Rev 7:18–31PubMedGoogle Scholar
  32. Pietrzkowski Z, Nemzer B, Spórna A, Stalica P, Tresher W, Keller R, Jimenez R, Michałowski T, Wybraniec S (2010) Influence of betalain-rich extract on reduction of discomfort associated with osteoarthritis. New Med 1:12–17Google Scholar
  33. Powers SK, Criswell D, Lawler J, Ji LL, Martin D, Herb RA, Dudley G (1994) Influence of exercise and fiber type on antioxidant enzyme activity in rat skeletal muscle. Am J Physiol 266(2 Pt 2):R375–R380. PubMedCrossRefGoogle Scholar
  34. Powers SK, DeRuisseau KC, Quindry J, Hamilton KL (2004) Dietary antioxidants and exercise. J Sports Sci 22(1):81–94. PubMedCrossRefGoogle Scholar
  35. Reid MB, Haack KE, Franchek KM, Valberg PA, Kobzik L, West MS (1992) Reactive oxygen in skeletal muscle. I. Intracellular oxidant kinetics and fatigue in vitro. J Appl Physiol (Bethesda Md: 1985) 73(5):1797–1804. CrossRefGoogle Scholar
  36. Sakihama Y, Maeda M, Hashimoto M, Tahara S, Hashidoko Y (2012) Beetroot betalain inhibits peroxynitrite-mediated tyrosine nitration and DNA strand cleavage. Free Radic Res 46(1):93–99. PubMedCrossRefGoogle Scholar
  37. Schwandt HJ, Heyduck B, Gunga HC, Rocker L (1991) Influence of prolonged physical exercise on the erythropoietin concentration in blood. Eur J Appl Physiol Occup Physiol 63(6):463–466PubMedCrossRefGoogle Scholar
  38. Steinberg JG, Ba A, Bregeon F, Delliaux S, Jammes Y (2007) Cytokine and oxidative responses to maximal cycling exercise in sedentary subjects. Med Sci Sports Exer 39(6):964–968. CrossRefGoogle Scholar
  39. Strack D, Vogt T, Schliemann W (2003) Recent advances in betalain research. Phytochemistry 62(3):247–269CrossRefGoogle Scholar
  40. Tesoriere L, Butera D, D’Arpa D, Di Gaudio F, Allegra M, Gentile C, Livrea MA (2003) Increased resistance to oxidation of betalain-enriched human low density lipoproteins. Free Radic Res 37(6):689–696PubMedCrossRefGoogle Scholar
  41. Tesoriere L, Allegra M, Butera D, Livrea MA (2004) Absorption, excretion, and distribution of dietary antioxidant betalains in LDLs: potential health effects of betalains in humans. Am J Clin Nutr 80(4):941–945. PubMedCrossRefGoogle Scholar
  42. Tesoriere L, Butera D, Allegra M, Fazzari M, Livrea MA (2005) Distribution of betalain pigments in red blood cells after consumption of cactus pear fruits and increased resistance of the cells to ex vivo induced oxidative hemolysis in humans. J Agric Food Chem 53 (4):1266–1270.; PubMedCrossRefGoogle Scholar
  43. Tesoriere L, Gentile C, Angileri F, Attanzio A, Tutone M, Allegra M, Livrea MA (2013) Trans-epithelial transport of the betalain pigments indicaxanthin and betanin across Caco-2 cell monolayers and influence of food matrix. Eur J Nutr 52(3):1077–1087. PubMedCrossRefGoogle Scholar
  44. Van Hoorebeke JS, Trias CO, Davis BA, Lozada CF, Casazza GA (2016) Betalain-rich concentrate supplementation improves exercise performance in competitive runners. Sports 4(3):40PubMedCentralCrossRefGoogle Scholar
  45. Vidal PJ, Lopez-Nicolas JM, Gandia-Herrero F, Garcia-Carmona F (2014) Inactivation of lipoxygenase and cyclooxygenase by natural betalains and semi-synthetic analogues. Food Chem 154:246–254. PubMedCrossRefGoogle Scholar
  46. Vincent HK, Powers SK, Demirel HA, Coombes JS, Naito H (1999) Exercise training protects against contraction-induced lipid peroxidation in the diaphragm. Eur J Appl Physiol Occup Physiol 79(3):268–273. PubMedCrossRefGoogle Scholar
  47. Vincent HK, Powers SK, Stewart DJ, Demirel HA, Shanely RA, Naito H (2000) Short-term exercise training improves diaphragm antioxidant capacity and endurance. Eur J Appl Physiol 81(1–2):67–74. PubMedCrossRefGoogle Scholar
  48. Yavari A, Javadi M, Mirmiran P, Bahadoran Z (2015) Exercise-induced oxidative stress and dietary antioxidants. Asian J Sports Med 6(1):e24898. PubMedPubMedCentralCrossRefGoogle Scholar
  49. Zielinska-Przyjemska M, Olejnik A, Dobrowolska-Zachwieja A, Grajek W (2009) In vitro effects of beetroot juice and chips on oxidative metabolism and apoptosis in neutrophils from obese individuals. Phytother Res 23(1):49–55. PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Petey W. Mumford
    • 1
  • Wesley C. Kephart
    • 2
  • Matthew A. Romero
    • 1
  • Cody T. Haun
    • 1
  • C. Brooks Mobley
    • 1
  • Shelby C. Osburn
    • 1
  • James C. Healy
    • 1
    • 3
  • Angelique N. Moore
    • 3
  • David D. Pascoe
    • 1
  • William C. Ruffin
    • 3
  • Darren T. Beck
    • 1
    • 3
  • Jeffrey S. Martin
    • 1
    • 3
  • Michael D. Roberts
    • 1
    • 3
  • Kaelin C. Young
    • 1
    • 3
    Email author
  1. 1.School of KinesiologyAuburn UniversityAuburnUSA
  2. 2.University of Wisconsin-WhitewaterWhitewaterUSA
  3. 3.Department of Cell Biology and PhysiologyEdward Via College of Osteopathic MedicineAuburnUSA

Personalised recommendations