European Journal of Applied Physiology

, Volume 118, Issue 10, pp 2097–2110 | Cite as

Muscle health and performance in monozygotic twins with 30 years of discordant exercise habits

  • Katherine E. Bathgate
  • James R. Bagley
  • Edward Jo
  • Robert J. Talmadge
  • Irene S. Tobias
  • Lee E. Brown
  • Jared W. Coburn
  • Jose A. Arevalo
  • Nancy L. Segal
  • Andrew J. GalpinEmail author
Original Article



Physical health and function depend upon both genetic inheritance and environmental factors (e.g., exercise training).


To enhance the understanding of heritability/adaptability, we explored the skeletal muscle health and physiological performance of monozygotic (MZ) twins with > 30 years of chronic endurance training vs. no specific/consistent exercise.


One pair of male MZ twins (age = 52 years; Trained Twin, TT; Untrained Twin, UT) underwent analyses of: (1) anthropometric characteristics and blood profiles, (2) markers of cardiovascular and pulmonary health, and (3) skeletal muscle size, strength, and power and molecular markers of muscle health.


This case study represents the most comprehensive physiological comparison of MZ twins with this length and magnitude of differing exercise history. TT exhibited: (1) lower body mass, body fat%, resting heart rate, blood pressure, cholesterol, triglycerides, and plasma glucose, (2) greater relative cycling power, anaerobic endurance, and aerobic capacity (VO2max), but lower muscle size/strength and poorer muscle quality, (3) more MHC I (slow-twitch) and fewer MHC IIa (fast-twitch) fibers, (4) greater AMPK protein expression, and (5) greater PAX7, IGF1Ec, IGF1Ea, and FN14 mRNA expression than UT.


Several measured differences are the largest reported between MZ twins (TT expressed 55% more MHC I fibers, 12.4 ml/kg/min greater VO2max, and 8.6% lower body fat% vs. UT). These data collectively (a) support utilizing chronic endurance training to improve body composition and cardiovascular health and (b) suggest the cardiovascular and skeletal muscle systems exhibit greater plasticity than previously thought, further highlighting the importance of studying MZ twins with large (long-term) differences in exposomes.


Fiber type Myosin heavy chain Maximal oxygen consumption Endurance training FN14 PAX7 Body composition AMPK Aerobic exercise Aging 



Body fat percentage


5′ AMP-activated protein kinase




Bone mineral content


Bone mineral density


Total cholesterol


Citrate synthase


Muscular cross-sectional area


Diastolic blood pressure


Dual-energy X-ray absorptiometry


Enhanced chemiluminescent


Echo intensity


Forced expiatory volume in the first second


Fat mass


Forced vital capacity


Glycosylated hemoglobin


High-density lipoprotein


Insulin-like growth factor a


Mechano-growth factor




Low-density lipoprotein


Lean mass


Myosin heavy chain




Muscle thickness


Maximal voluntary isometric contraction


Myosin heavy chain gene




Endothelial nitric oxide synthase


Peak power




Quantitative reverse transcriptase polymerase chain reaction


Respiratory exchange ratio


Resting heart rate


Rating of perceived exertion


Rotations per minute


Systolic blood pressure


Transcription factor A of the mitochondria


Tumor necrosis factor-α




Trained twin


Untrained twin


Visceral adipose tissue


Vascular endothelial growth factor


Vastus lateralis


Maximal aerobic capacity


Wingate anaerobic test


Weekly estimated energy expenditure



The authors would like to thank Kathryn McLeland, Cassio Ruas, Nathan Serrano, Kara Lazauskas, and Colleen Gulick for their assistance with this project. This research was funded by a California State University Development of Research and Creativity (CSU-DRC) Grant to J.R. Bagley.

Author contributions

JRB and AJG conceived and designed this work. KEB, JRB, EJ, RJT, IST, JAA, and AJG performed the experiments. All authors collected and analyzed the data. KEB, JRB, LEB, JWC, NLS, and AJG interpreted the results of experiments. KEB, AJG, and JRB drafted the manuscript. All authors read and approved the manuscript.

Compliance with ethical standards

Conflict of interest

The authors declared no conflicts of interest.

Ethical standards

All procedures performed in this study were in accordance with the ethical standards of the University’s Institutional Review Board for Human Subjects and with the 1964 Declaration of Helsinki and its later amendments.

Informed consent

Informed consent was obtained from all individual participants included in the study.


  1. Adams TD, Yanowitz FG, Fisher AG, Ridges JD, Nelson AG, Hagan AD, Williams RR, Hunt SC (1985) Heritability of cardiac size: an echocardiographic and electrocardiographic study of monozygotic and dizygotic twins. Circulation 71(1):39–44CrossRefPubMedGoogle Scholar
  2. Allen DL, Monke SR, Talmadge RJ, Roy RR, Edgerton VR (1995) Plasticity of myonuclear number in hypertrophied and atrophied mammalian skeletal muscle fibers. J Appl Physiol (1985) 78(5):1969–1976CrossRefPubMedGoogle Scholar
  3. Bagley JR, McLeland KA, Arevalo JA, Brown LE, Coburn JW, Galpin AJ (2017) Skeletal muscle fatigability and myosin heavy chain fiber type in resistance trained Men. J Strength Cond Res 31(3):602–607CrossRefPubMedGoogle Scholar
  4. Boomsma D, Busjahn A, Peltonen L (2002) Classical twin studies and beyond. Nat Rev Genet 3(11):872–882CrossRefPubMedGoogle Scholar
  5. Cornelissen VA, Verheyden B, Aubert AE, Fagard RH (2010) Effects of aerobic training intensity on resting, exercise and post-exercise blood pressure, heart rate and heart-rate variability. J Hum Hypertens 24(3):175–182CrossRefPubMedGoogle Scholar
  6. Correa-de-Araujo R, Harris-Love MO, Miljkovic I, Fragala MS, Anthony BW, Manini TM (2017) The need for standardized assessment of muscle quality in skeletal muscle function deficit and other aging-related muscle dysfunctions: a symposium report. Front Physiol 8:87. CrossRefPubMedPubMedCentralGoogle Scholar
  7. Danis A, Kyriazis Y, Klissouras V (2003) The effect of training in male prepubertal and pubertal monozygotic twins. Eur J Appl Physiol 89(3–4):309–318CrossRefPubMedGoogle Scholar
  8. Dickinson JM, Lee JD, Sullivan BE, Harber MP, Trappe SW, Trappe TA (2010) A new method to study in vivo protein synthesis in slow- and fast-twitch muscle fibers and initial measurements in humans. J Appl Physiol (1985) 108(5):1410–1416CrossRefPubMedPubMedCentralGoogle Scholar
  9. Eastwood PR, Hillman DR, Finucane KE (2001) Inspiratory muscle performance in endurance athletes and sedentary subjects. Respirology 6(2):95–104CrossRefPubMedGoogle Scholar
  10. Fagard R, Van Den Broeke C, Bielen E, Amery A (1987) Maximum oxygen uptake and cardiac size and function in twins. Am J Cardiol 60(16):1362–1367CrossRefPubMedGoogle Scholar
  11. Fagard R, Bielen E, Amery A (1991) Heritability of aerobic power and anaerobic energy generation during exercise. J Appl Physiol (1985) 70(1):357–362CrossRefPubMedGoogle Scholar
  12. Frosig C, Jorgensen SB, Hardie DG, Richter EA, Wojtaszewski JF (2004) 5′-AMP-activated protein kinase activity and protein expression are regulated by endurance training in human skeletal muscle. Am J Physiol Endocrinol Metab 286(3):E411–E417CrossRefPubMedGoogle Scholar
  13. Fukumoto Y, Ikezoe T, Yamada Y, Tsukagoshi R, Nakamura M, Mori N, Kimura M, Ichihashi N (2012) Skeletal muscle quality assessed from echo intensity is associated with muscle strength of middle-aged and elderly persons. Eur J Appl Physiol 112(4):1519–1525CrossRefPubMedGoogle Scholar
  14. Hameed M, Orrell RW, Cobbold M, Goldspink G, Harridge SD (2003) Expression of IGF-I splice variants in young and old human skeletal muscle after high resistance exercise. J Physiol 547(Pt 1):247–254CrossRefPubMedGoogle Scholar
  15. Hannukainen JC, Borra R, Linderborg K, Kallio H, Kiss J, Lepomaki V, Kalliokoski KK, Kujala UM, Kaprio J, Heinonen OJ, Komu M, Parkkola R, Ahotupa M, Lehtimaki T, Huupponen R, Iozzo P, Nuutila P (2011) Liver and pancreatic fat content and metabolism in healthy monozygotic twins with discordant physical activity. J Hepatol 54(3):545–552CrossRefPubMedGoogle Scholar
  16. Hughes SM, Taylor JM, Tapscott SJ, Gurley CM, Carter WJ, Peterson CA (1993) Selective accumulation of MyoD and myogenin mRNAs in fast and slow adult skeletal muscle is controlled by innervation and hormones. Development 118(4):1137–1147PubMedGoogle Scholar
  17. Jacob C, Zouhal H, Vincent S, Gratas-Delamarche A, Berthon PM, Bentue-Ferrer D, Delamarche P (2002) Training status (endurance or sprint) and catecholamine response to the Wingate-test in women. Int J Sports Med 23(5):342–347CrossRefPubMedGoogle Scholar
  18. Kelly TL, Wilson KE, Heymsfield SB (2009) Dual energy X-Ray absorptiometry body composition reference values from NHANES. PLoS One 4(9):e7038CrossRefPubMedPubMedCentralGoogle Scholar
  19. Kjobsted R, Hingst JR, Fentz J, Foretz M, Sanz MN, Pehmoller C, Shum M, Marette A, Mounier R, Treebak JT, Wojtaszewski JFP, Viollet B, Lantier L (2018) AMPK in skeletal muscle function and metabolism. FASEB J fj201700442RGoogle Scholar
  20. Klissouras V, Pigozzi F (2009) Genetic limits of sport performance: quo vadis? J Sports Med Phys Fitness 49(1):1–5PubMedGoogle Scholar
  21. Kodama S, Saito K, Tanaka S, Maki M, Yachi Y, Asumi M, Sugawara A, Totsuka K, Shimano H, Ohashi Y, Yamada N, Sone H (2009) Cardiorespiratory fitness as a quantitative predictor of all-cause mortality and cardiovascular events in healthy men and women: a meta-analysis. JAMA 301(19):2024–2035CrossRefPubMedGoogle Scholar
  22. Leskinen T, Sipila S, Alen M, Cheng S, Pietilainen KH, Usenius JP, Suominen H, Kovanen V, Kainulainen H, Kaprio J, Kujala UM (2009) Leisure-time physical activity and high-risk fat: a longitudinal population-based twin study. Int J Obes (Lond) 33(11):1211–1218. CrossRefGoogle Scholar
  23. Leskinen T, Rinnankoski-Tuikka R, Rintala M, Seppanen-Laakso T, Pollanen E, Alen M, Sipila S, Kaprio J, Kovanen V, Rahkila P, Oresic M, Kainulainen H, Kujala UM (2010) Differences in muscle and adipose tissue gene expression and cardio-metabolic risk factors in the members of physical activity discordant twin pairs. PLoS One 5:(9)CrossRefGoogle Scholar
  24. Leskinen T, Usenius JP, Alen M, Kainulainen H, Kaprio J, Kujala UM (2011) Leisure-time physical activity and artery lumen diameters: a monozygotic co-twin control study. Scand J Med Sci Sports 21(6):e208–e214CrossRefPubMedGoogle Scholar
  25. Li X, Yang Q, Bai J, Xuan Y, Wang Y (2015) Identification of appropriate reference genes for human mesenchymal stem cell analysis by quantitative real-time PCR. Biotechnol Lett 37(1):67–73CrossRefPubMedGoogle Scholar
  26. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25(4):402–408CrossRefPubMedPubMedCentralGoogle Scholar
  27. Mancini A, Vitucci D, Labruna G, Imperlini E, Randers MB, Schmidt JF, Hagman M, Andersen TR, Russo R, Orru S, Krustrup P, Salvatore F, Buono P (2017) Effect of lifelong football training on the expression of muscle molecular markers involved in healthy longevity. Eur J Appl Physiol 117(4):721–730CrossRefPubMedGoogle Scholar
  28. Murach KA, Bagley JR, McLeland KA, Arevalo JA, Ciccone AB, Malyszek KK, Wen Y, Galpin AJ (2016) Improving human skeletal muscle myosin heavy chain fiber typing efficiency. J Muscle Res Cell MotilGoogle Scholar
  29. Pessina P, Conti V, Pacelli F, Rosa F, Doglietto GB, Brunelli S, Bossola M (2010) Skeletal muscle of gastric cancer patients expresses genes involved in muscle regeneration. Oncol Rep 24(3):741–745PubMedGoogle Scholar
  30. Raue U, Jemiolo B, Yang Y, Trappe S (2015) TWEAK-Fn14 pathway activation after exercise in human skeletal muscle: insights from two exercise modes and a time course investigation. J Appl Physiol 118(5):569–578CrossRefPubMedGoogle Scholar
  31. Riebe D, Ehrman JK, Liguori G, Magal M (2018) ACSM’s guidelines for exercise testing and prescription, 10th edn. Wolters Kluwer, PhiladelphiaGoogle Scholar
  32. Rottensteiner M, Leskinen T, Niskanen E, Aaltonen S, Mutikainen S, Wikgren J, Heikkila K, Kovanen V, Kainulainen H, Kaprio J, Tarkka IM, Kujala UM (2015) Physical activity, fitness, glucose homeostasis, and brain morphology in twins. Med Sci Sports Exerc 47(3):509–518CrossRefPubMedGoogle Scholar
  33. Schutte NM, Nederend I, Hudziak JJ, Bartels M, de Geus EJ (2016) Twin-sibling study and meta-analysis on the heritability of maximal oxygen consumption. Physiol Genomics 48(3):210–219CrossRefPubMedPubMedCentralGoogle Scholar
  34. Scribbans TD, Edgett BA, Bonafiglia JT, Baechler BL, Quadrilatero J, Gurd BJ (2017) A systematic upregulation of nuclear and mitochondrial genes is not present in the initial postexercise recovery period in human skeletal muscle. Appl Physiol Nutr Metab 42(6):571–578CrossRefPubMedGoogle Scholar
  35. Segal NL (2017) Twin mythconceptions: false beliefs, fables, and facts about twins. Twin mythconceptions. Academic Press, San DiegoGoogle Scholar
  36. Silvennoinen M, Ahtiainen JP, Hulmi JJ, Pekkala S, Taipale RS, Nindl BC, Laine T, Hakkinen K, Selanne H, Kyrolainen H, Kainulainen H (2015) PGC-1 isoforms and their target genes are expressed differently in human skeletal muscle following resistance and endurance exercise. Physiol Rep 3 (10)CrossRefPubMedPubMedCentralGoogle Scholar
  37. Simoneau JA, Bouchard C (1995) Genetic determinism of fiber type proportion in human skeletal muscle. FASEB J 9(11):1091–1095CrossRefPubMedGoogle Scholar
  38. Tajrishi MM, Zheng TS, Burkly LC, Kumar A (2014) The TWEAK-Fn14 pathway: a potent regulator of skeletal muscle biology in health and disease. Cytokine Growth Factor Rev 25(2):215–225CrossRefPubMedGoogle Scholar
  39. Thomis MA, Beunen GP, Maes HH, Blimkie CJ, Van Leemputte M, Claessens AL, Marchal G, Willems E, Vlietinck RF (1998) Strength training: importance of genetic factors. Med Sci Sports Exerc 30(5):724–731CrossRefPubMedGoogle Scholar
  40. Tobias IS, Lazauskas KK, Arevalo JA, Bagley JR, Brown LE, Galpin AJ (2018) Fiber type-specific analysis of AMPK isoforms in human skeletal muscle: advancement in methods via capillary nanoimmunoassay. J Appl Physiol (1985) 124(4):840–849CrossRefPubMedGoogle Scholar
  41. Trappe S, Luden N, Minchev K, Raue U, Jemiolo B, Trappe TA (2015) Skeletal muscle signature of a champion sprint runner. J Appl Physiol 118(12):1460–1466CrossRefPubMedPubMedCentralGoogle Scholar
  42. Volaklis KA, Halle M, Meisinger C (2015) Muscular strength as a strong predictor of mortality: A narrative review. Eur J Intern Med 26(5):303–310CrossRefPubMedGoogle Scholar
  43. Welle S, Bhatt K, Thornton CA (1999) Stimulation of myofibrillar synthesis by exercise is mediated by more efficient translation of mRNA. J Appl Physiol 86(4):1220–1225CrossRefPubMedGoogle Scholar
  44. Whelton SP, Chin A, Xin X, He J (2002) Effect of aerobic exercise on blood pressure: a meta-analysis of randomized, controlled trials. Ann Intern Med 136(7):493–503CrossRefPubMedGoogle Scholar
  45. Whelton PK, Carey RM, Aronow WS, Casey DE Jr, Collins KJ, Dennison Himmelfarb C, DePalma SM, Gidding S, Jamerson KA, Jones DW, MacLaughlin EJ, Muntner P, Ovbiagele B, Smith SC Jr, Spencer CC, Stafford RS, Taler SJ, Thomas RJ, Williams KA, Sr., Williamson JD, Wright JT Jr. (2017) 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA Guideline for the Prevention, Detection, Evaluation, and Management of High Blood Pressure in Adults: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. J Am Coll CardiolGoogle Scholar
  46. Wilmore JH, Stanforth PR, Gagnon J, Leon AS, Rao DC, Skinner JS, Bouchard C (1996) Endurance exercise training has a minimal effect on resting heart rate: the HERITAGE Study. Med Sci Sports Exerc 28(7):829–835CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Biochemistry and Molecular Exercise Physiology Laboratory, Center for Sport Performance, Department of KinesiologyCalifornia State UniversityFullertonUSA
  2. 2.Muscle Physiology Laboratory, Department of KinesiologySan Francisco State UniversitySan FranciscoUSA
  3. 3.Human Performance Research LaboratoryCalifornia State Polytechnic UniversityPomonaUSA
  4. 4.Department of Biological SciencesCalifornia State Polytechnic UniversityPomonaUSA
  5. 5.Department of PsychologyCalifornia State UniversityFullertonUSA

Personalised recommendations