Advertisement

New insights on occupational exposure and bladder cancer risk: a pooled analysis of two Italian case–control studies

  • Veronica Sciannameo
  • Angela Carta
  • Angelo d’Errico
  • Maria Teresa Giraudo
  • Francesca Fasanelli
  • Cecilia Arici
  • Milena Maule
  • Paolo Carnà
  • Paolo Destefanis
  • Luigi Rolle
  • Paolo Gontero
  • Giovanni Casetta
  • Andrea Zitella
  • Giuseppina Cucchiarale
  • Paolo Vineis
  • Stefano Porru
  • Carlotta Sacerdote
  • Fulvio Ricceri
Original Article
  • 21 Downloads

Abstract

Purpose

The main risk factor for bladder cancer (BC) is cigarette smoking, but also occupational exposure to carcinogens is relevant, causing about 4–10% of BC. We aimed at investigating the association between BC risk, occupations held in the past and exposure to occupational carcinogens, also assessing whether these associations were influenced by tumour grade.

Methods

We pooled data from two Italian case–control studies on male BC, analyzing 893 cases and 978 controls. Occupations were classified using the International Standard Classification of Occupations and exposure to carcinogens was assigned using a validated Job Exposure Matrix. Logistic regression approach was used as well as a semi-Bayesian model, based on a priori information on exposure.

Results

A significantly increased BC risk was found for chemical engineering technicians, postmen, and lathe operators, but only, for the latter, the association remained significant after Bayesian control for type I error. Among carcinogens, cadmium and trichloroethylene were associated with BC. When analyzing data by grade, exposure to these carcinogens was associated with low-grade BC only.

Conclusions

Our results suggest that monitoring workplaces to prevent exposure to carcinogenic agents is still an important task, which should be still given adequate importance in public health.

Keywords

Bladder cancer Occupational exposure Carcinogens Case–control study Bayesian methods 

Notes

Acknowledgements

We would like to thank Dr. Timo Kauppinen for giving us the opportunity to use the NOCCA JEM. The study was partly funded through an agreement between the Universities of Verona and Brescia, Italy.

Supplementary material

420_2018_1388_MOESM1_ESM.pdf (401 kb)
Supplementary material 1 (PDF 401 KB)

References

  1. AIOM AIRTUM (2016) I numeri del cancro in Italia 2016. Intermedia Editore, BresciaGoogle Scholar
  2. Assi MA, Hezmee MN, Haron AW, Sabri MY, Rajion MA (2016) The detrimental effects of lead on human and animal health. Vet World 6:660–671CrossRefGoogle Scholar
  3. Babjuk M, Burger M, Zigeuner R, Shariat SF, van Rhijn BW, Compérat E, Sylvester RJ, Kaasinen E, Böhle A, Palou Redorta J, Rouprêt M (2013) European Association of Urology. EAU guidelines on non-muscle-invasive urothelial carcinoma of the bladder: update 2013. Eur Urol 64(4):639–653.  https://doi.org/10.1016/j.eururo.2013.06.003 CrossRefGoogle Scholar
  4. Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B (Methodological) 57(1):289–300Google Scholar
  5. Boffetta P, Silverman DT (2001) A meta-analysis of bladder cancer and diesel exhaust exposure. Epidemiology 12(1):125–130CrossRefGoogle Scholar
  6. Boiano JM, Hull RD (2001) Development of a National Occupational Exposure Survey and database associated with NIOSH hazard surveillance initiatives. Appl Occup Environ Hyg 16(2):128–134CrossRefGoogle Scholar
  7. Case R, Hosker ME (1954) Tumour of the urinary bladder as an occupational disease in the rubber industry in England and Wales. Br J Ind Med 8(2):39–50Google Scholar
  8. Case RA, Hosker ME, McDonald DB, Pearson JT (1954) Tumours of the urinary bladder in workmen engaged in the manufacture and use of certain dyestuff intermediates in the British chemical industry. I. The role of aniline, benzidine, alpha-naphtylamine, and beta-naphtylamine. Br J Int Med 11:75–104Google Scholar
  9. Colt JS, Friesen MC, Stewart PA, Donguk P, Johnson A, Schwenn M, Karagas MR, Armenti K, Waddell R, Verrill C, Ward MH, Freeman LE, Moore LE, Koutros S, Baris D, Silverman DT (2014) A case–control study of occupational exposure to metalworking fluids and bladder cancer risk among men. Occup Environ Med 71(10):667–674.  https://doi.org/10.1136/oemed-2013-102056 CrossRefGoogle Scholar
  10. Concato J, Peduzzi P, Holford TR, Feinstein AR (1995) Importance of events per independent variable in proportional hazards analysis. I. Background, goals, and general strategy. J Clin Epidemiol 48(12):1495–1501CrossRefGoogle Scholar
  11. Corbin M, Richiardi L, Vermeulen R, Kromhout H, Merletti F, Peters S, Simonato L, Steenland K, Pearce N, Maule M (2012) Hierarchical regression for multiple comparisons in a case–control study of occupational risks for lung cancer. PLoS One 7(6):1–8.  https://doi.org/10.1371/journal.pone.0038944 CrossRefGoogle Scholar
  12. Cumberbatch MG, Windsor-Shellard B, Catto JW (2017) The contemporary landscape of occupational bladder cancer within the United Kingdom: a meta-analysis of risks over the last 80 years. BJU Int 119(1):100–109.  https://doi.org/10.1111/bju.13561 CrossRefGoogle Scholar
  13. d’Errico A, Pasian S, Baratti A, Zanelli R, Alfonzo S, Gilardi L, Beatrice F, Bena A, Costa G (2009) A case–control study on occupational risk factors for sino-nasal cancer. Occup Environ Med 66(7):448–455.  https://doi.org/10.1136/oem.2008.041277 CrossRefGoogle Scholar
  14. Falcone U, Gilardi L, Santoro S, Orengia M, Marighella M, Coffano ME (2013) MATline, a job-exposure matrix for the prevision of exposure to carcinogens: new functions and potential applications. Epidemiol Prev 37(1):60–66Google Scholar
  15. Feki-Tounsi M, Hamza-Chaffai A (2014) Cadmium as a possible cause of bladder cancer: a review of accumulated evidence. Environ Sci Pollut Res Int 21(18):10561–10573.  https://doi.org/10.1007/s11356-014-2970-0 CrossRefGoogle Scholar
  16. Feki-Tounsi M, Olmedo P, Gil F, Khlifi R, Mhiri MN, Rebai A, HamzaChaffai A (2013) Cadmium in blood of Tunisian men and risk of bladder cancer: interactions with arsenic exposure and smoking. Environ Sci Pollut Res Int 20(10):7204–7213.  https://doi.org/10.1007/s11356-013-1716-8 CrossRefGoogle Scholar
  17. Figueroa JD, Koutros S, Colt JS, Kogevinas M, Garcia-Closas M, Real FX, Friesen MC, Baris D, Stewart P, Schwenn M, Johnson A, Karagas MR, Armenti KR, Moore LE, Schned A, Lenz P, Prokunina-Olsson L, Banday AR, Paquin A, Ylaya K, Chung JY, Hewitt SM, Nickerson ML, Tardón A, Serra C, Carrato A, García-Closas R, Lloreta J, Malats N, Fraumeni JF Jr, Chanock SJ, Chatterjee N, Rothman N, Silverman DT (2015) Modification of occupational exposures on bladder cancer risk by common genetic polymorphisms. J Natl Cancer Inst 107(11):djv223CrossRefGoogle Scholar
  18. Golka K, Kopps S, Myslak ZW (2004a) Carcinogenicity of azo colorants: influence of solubility and bioavailability. Toxicol Lett 151(1):203–210CrossRefGoogle Scholar
  19. Golka K, Wiese A, Assennato G, Bolt HM (2004b) Occupational exposure and urological cancer. World J Urol 21(6):382–391CrossRefGoogle Scholar
  20. Greenland S (1994) Hierarchical regression for epidemiologic analysis of multiple exposures. Environ Health Perspect 102(suppl 8):33–39CrossRefGoogle Scholar
  21. Hrudey SE, Backer L, Humpage AR, Krasner SW, Michaud DS, Moore LE, Singer PC, Stanford BD (2015) Evaluating evidence for association of human bladder cancer with drinking water chlorination disinfection by-products. J Toxicol Environ Health 18(5):213–241.  https://doi.org/10.1080/10937404.2015.1067661 CrossRefGoogle Scholar
  22. IARC (1987) Polynuclear aromatic compounds, part 2: carbon blacks, mineral oil (lubricant base oils and derived products) and some nitroarenes. IARC, LyonGoogle Scholar
  23. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans (1995) Volume 63: dry cleaning, some chlorinated solvents and other industrial chemicals. IARC, LyonGoogle Scholar
  24. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans (2000) Volume 77: some industrial chemicals. IARC, LyonGoogle Scholar
  25. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans (2010) Volume 98: painting, firefighting, and shiftwork. IARC, LyonGoogle Scholar
  26. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans (2012) Volume 100F: chemical agents and related occupations. IARC, LyonGoogle Scholar
  27. International Labour Office (1968) ISCO. International Standard Classification of Occupations. International Labor Organisation, GenevaGoogle Scholar
  28. ITACAN (2018) Tumori in Italia, Versione 2.0. Associazione Italiana dei Registri TUMori http://www.registri-tumori.it. Accessed Jan 2018
  29. Joseph P (2009) Mechanisms of cadmium carcinogenesis. Toxicol Appl Pharmacol 238(3):272–279.  https://doi.org/10.1016/j.taap.2009.01.011 CrossRefGoogle Scholar
  30. Kauppinen T, Heikkila P, Plato N, Woldbaek T, Lenvik H, Hansen J, Kristjansson V, Pukkala E (2009) Construction of job-exposure matrices for the Nordic Occupational Cancer Study (NOCCA). Acta Oncol 48(5):791–800.  https://doi.org/10.1080/02841860902718747 CrossRefGoogle Scholar
  31. Kellen E, Zeegers MP, Hond ED, Buntinx F (2007) Blood cadmium may be associated with bladder carcinogenesis: the Belgian case–control study on bladder cancer. Cancer Detect Prev 31(1):77–82CrossRefGoogle Scholar
  32. Kogevinas M, Kauppinen T, Boffetta P, Saracci R (1998) Estimation of the burden of occupational cancer in Europe. Final report to the European commission of a project funded by the programme in Europe Against Cancer. Tech rep, Institut Municipal d’Investigacio MedicaGoogle Scholar
  33. Kogevinas M, t’Mannetje A, Cordier S, Ranft U, González CA, Vineis P, Chang-Claude J, Lynge E, Wahrendorf J, Tzonou A, Jöckel KH, Serra C, Porru S, Hours M, Greiser E, Boffetta P (2003) Occupation and bladder among men in Western Europe. Cancer Causes Control 14(10):907–914CrossRefGoogle Scholar
  34. Larson J, Yasmin T, Sens DA, Zhou XD, Sens MA, Garrett SH, Dunlevy JR, Cao L, Somji S (2010) SPARC gene expression is repressed in human urothelial cells (UROtsa) exposed to or malignantly transformed by cadmium or arsenite. Toxicol Lett 199(2):166–172CrossRefGoogle Scholar
  35. Lohi J, Kyyronen P, Kauppinen T, Kujala V, Pukkala E (2008) Occupational exposure to solvents and gasoline and risk of cancers in the urinary tract among finnish workers. Am J Ind Med 51(9):668–672.  https://doi.org/10.1002/ajim.20606 CrossRefGoogle Scholar
  36. McGeoghegan D, Binks K (2000) The mortality and cancer morbidity experience of workers at the Capenhurst uranium enrichment facility 1946–95. J Radiol Prot 20(4):381–401CrossRefGoogle Scholar
  37. Negri E, La Vecchia C (2001) Epidemiology and prevention of bladder cancer. Eur J Cancer Prev 10:7–14CrossRefGoogle Scholar
  38. Peduzzi P, Concato J, Feinstein AR, Holford TR (1995) Importance of events per independent variable in proportional hazards regression analysis. II. Accuracy and precision of regression estimates. J Clin Epidemiol 48(12):1503–1510CrossRefGoogle Scholar
  39. Peduzzi P, Concato J, Kemper E, Holford TR, Feinstein AR (1996) A simulation study of the number of events per variable in logistic regression analysis. J Clin Epidemiol 49(12):1373–1379CrossRefGoogle Scholar
  40. Porru S, Aulenti V, Donato F, Boffetta P, Fazioli R, Cosciani Cunico S, Alessio L (1996) Bladder cancer and occupation: a case–control study in Northern Italy. Occup Environ Med 53(1):6–10CrossRefGoogle Scholar
  41. Porru S, Pavanello S, Carta A, Arici C, Simeone C, Izzotti A, Mastrangelo G (2014) Complex relationships between occupation, environment, DNA adducts, genetic polymorphisms and bladder cancer in a case–control study using a structural equation modeling. PLoS One 9(4):e94566CrossRefGoogle Scholar
  42. Purdue MP, Hutchings SJ, Rushton L, Silverman DT (2015) The proportion of cancer attributable to occupational exposures. Ann Epidemiol 25(3):188–192.  https://doi.org/10.1016/j.annepidem.2014.11.009 CrossRefGoogle Scholar
  43. Ricceri F, Guarrera S, Sacerdote C, Polidoro S, Allione A, Fontana D, Destefanis P, Tizzani A, Casetta G, Cucchiarale G, Vineis P, Matullo G (2010) ERCC1 haplotypes modify bladder cancer risk: a case–control study. DNA Repair 9(2):191–200.  https://doi.org/10.1016/j.dnarep.2009.12.002 CrossRefGoogle Scholar
  44. Rota M, Bosetti C, Boccia S, Boffetta P, La Vecchia C (2014) Occupational exposures to polycyclic aromatic hydrocarbons and respiratory and urinary tract cancers: an updated systematic review and a meta-analysis to 2014. Arch Toxicol 88(8):1479–1490.  https://doi.org/10.1007/s00204-014-1296-5 CrossRefGoogle Scholar
  45. Rushton L, Hutchings S, Brown T (2008) The burden of cancer at work: estimation as the first step to prevention. Occup Environ Med 65(12):789–800CrossRefGoogle Scholar
  46. Sacerdote C, Matullo G, Polidoro S, Gamberini S, Piazza A, Karagas MR, Rolle L, De Stefanis P, Casetta G, Morabito F, Vineis P, Guarrera S (2007) Intake of fruits and vegetables and polymorphisms in DNA repair genes in bladder cancer. Mutagenesis 22(4):281–285CrossRefGoogle Scholar
  47. Sacerdote C, Guarrera S, Ricceri F, Pardini B, Polidoro S, Allione A, Critelli R, Russo A, Andrew AS, Ye Y, Wu X, Kiemeney LA, Bosio A, Casetta G, Cucchiarale G, Destefanis P, Gontero P, Rolle L, Zitella A, Fontana D, Vineis P, Matullo G (2013) Polymorphisms in the XRCC1 gene modify survival of bladder cancer patients treated with chemotherapy. Int J Cancer Oct 133(8):2004–2009CrossRefGoogle Scholar
  48. Saint-Jacques N, Parker L, Brown P, Dummer T (2014) Arsenic in drinking water and urinary tract cancers: a systematic review of 30 years of epidemiological evidence. Environ Health 13:44.  https://doi.org/10.1186/1476-069X-13-44 CrossRefGoogle Scholar
  49. Samanic CM, Kogevinas M, Silverman DT, Tardón A, Serra C, Malats N, Real FX, Carrato A, García-Closas R, Sala M, Lloreta J, Rothman N, Dosemeci M (2008) Occupation and bladder cancer in a hospital-based case–control study in Spain. Occup Environ Med 65(5):347–353CrossRefGoogle Scholar
  50. Schottenfeld D, Fraumeni JF (2006) Cancer epidemiology and prevention, 3rd edn. Oxford University press, OxfordCrossRefGoogle Scholar
  51. Sens DA, Park S, Gurel V, Sens MA, Garrett SH, Somji S (2004) Inorganic cadmium- and arsenite-induced malignant transformation of human bladder urothelial cells. Toxicol Sci 79(1):56–63CrossRefGoogle Scholar
  52. Stewart BW, Wild CP (2014) World cancer report 2014. IARC, LyonGoogle Scholar
  53. Sturgeon SR1, Hartge P, Silverman DT, Kantor AF, Linehan WM, Lynch C, Hoover RN (1994) Associations between bladder cancer risk factors and tumor stage and grade at diagnosis. Epidemiology 5(2):218–225CrossRefGoogle Scholar
  54. Talaska G, Dooley KL, Kadlubar FF (1990) Detection and characterization of carcinogen-DNA adducts in exfoliated urothelial cells from 4-aminobiphenyl-treated dogs by 32P-postlabelling and subsequent thin-layer and high-pressure liquid chromatography. Carcinogenesis 11(4):639–646CrossRefGoogle Scholar
  55. Van Batavia J, Yamany T, Molotkov A, Dan H, Mansukhani M, Batourina E, Schneider K, Oyon D, Dunlop M, Wu XR, Cordon-Cardo C, Mendelsohn C (2014) Bladder cancers arise from distinct urothelial sub-populations. Nat Cell Biol 16(10):982–991.  https://doi.org/10.1038/ncb3038 CrossRefGoogle Scholar
  56. Van Osch FHM, Jochems SHJ, Van Schooten FJ, Bryan RT, Zeegers MP (2016) Quantified relations between exposure to tobacco smoking and bladder cancer risk: a meta-analysis of 89 observational studies. Int J Epidemiol 45(3):857–870.  https://doi.org/10.1093/ije/dyw044 CrossRefGoogle Scholar
  57. Verhoeven RH, Louwman MW, Buntinx F, Botterweck AM, Lousbergh D, Faes C, Coebergh JW (2011) Variation in cancer incidence in northeastern Belgium and southeastern Netherlands seems unrelated to cadmium emission of zinc smelters. Eur J Cancer Prev 20(6):549–555CrossRefGoogle Scholar
  58. Vineis P, Di Prima S (1983) Cutting oil and bladder cancer. Scand J Work Environ Health 9(5):449–450CrossRefGoogle Scholar
  59. Vineis P, Pirastu R (1997) Aromatic amines and cancer. Cancer Causes Control 8(3):346–355CrossRefGoogle Scholar
  60. Vittinghoff E, McCulloch CE (2007) Relaxing the rule of ten events per variable in logistic and Cox regression. Am J Epidemiol 165(6):710–718CrossRefGoogle Scholar
  61. Waalkes MP, Rehm S, Cherian MG (2000) Repeated cadmium exposures enhance the malignant progression of ensuing tumors in rats. Toxicol Sci 54(1):110–120CrossRefGoogle Scholar
  62. Waisberg M, Joseph P, Hale B, Beyersmann D (2003) Molecular and cellular mechanisms of cadmium carcinogenesis. Toxicology 192:95–117CrossRefGoogle Scholar
  63. Weiss HA, Darby SC, Doll R (1994) Cancer mortality following X-ray treatment for ankylosing spondylitis. Int J Cancer 59(3):327–338CrossRefGoogle Scholar
  64. Witte JS, Greenland S, Haile RW, Bird CL (1994) Hierarchical regression analysis applied to a study of multiple dietary exposures and breast cancer. Epidemiology 5(6):612–621CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Veronica Sciannameo
    • 1
    • 2
  • Angela Carta
    • 3
    • 4
  • Angelo d’Errico
    • 1
  • Maria Teresa Giraudo
    • 5
  • Francesca Fasanelli
    • 6
  • Cecilia Arici
    • 4
    • 10
  • Milena Maule
    • 6
  • Paolo Carnà
    • 1
  • Paolo Destefanis
    • 7
  • Luigi Rolle
    • 7
  • Paolo Gontero
    • 7
  • Giovanni Casetta
    • 7
  • Andrea Zitella
    • 7
  • Giuseppina Cucchiarale
    • 8
  • Paolo Vineis
    • 9
  • Stefano Porru
    • 4
    • 10
  • Carlotta Sacerdote
    • 6
  • Fulvio Ricceri
    • 1
    • 2
  1. 1.Unit of EpidemiologyRegional Health Service, ASLTO3GrugliascoItaly
  2. 2.Department of Biological and Clinical SciencesUniversity of TurinOrbassanoItaly
  3. 3.Department of Medical-Surgical Specialties, Radiological Sciences and Public HealthUniversity of BresciaBresciaItaly
  4. 4.University Research Center Integrated Models for Prevention and Protection in Environmental and Occupational HealthUniversity of BresciaBresciaItaly
  5. 5.Department of Mathematics “G. Peano”University of TurinTurinItaly
  6. 6.Unit of Cancer Epidemiology, CPO Piedmont, Department of Medical Sciences, Città della Salute e della Scienza HospitalUniversity of TurinTurinItaly
  7. 7.Unit of Urology U, Città della Salute e della Scienza HospitalUniversity of TurinTurinItaly
  8. 8.Unit of Urology ICellini ClinicTurinItaly
  9. 9.Imperial College LondonLondonUK
  10. 10.Department of Diagnostics and Public HealthUniversity of VeronaVeronaItaly

Personalised recommendations