Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Computation of effective thermo-piezoelectric properties of porous ceramics via asymptotic homogenization and finite element methods for energy-harvesting applications

Abstract

We consider the linear thermo-piezoelectric properties of a ceramic matrix with cylindrical empty pores distributed periodically. The asymptotic homogenization method is applied to an elliptical tensor-weighted boundary value problem in the Stress-Charge-Entropy formulation of the constitutive relations with rapidly oscillating coefficients and free boundary conditions on the surfaces of the pores. For different shapes of the pore cross section, we solve the local problems via finite element method to compute the effective coefficients as functions of the physical properties of the matrix, the shape of the pore cross section and their volume fraction. The numerical results show excellent agreement with analytical formulae. When the effective coefficients are transformed to the Strain-Charge-Entropy formulation of the constitutive relations, they become independent of the shape of the cross section, which further validates the importance of the analytical formulae. We compute the piezoelectric and pyroelectric figures of merit for energy-harvesting applications, which depend on the effective coefficients and are compared with recent experimental results. This contribution could be useful for fine-tuning the properties of this class of materials for energy-harvesting applications.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. 1.

    Akdogan, E., Allahverdi, M., Safari, A.: Piezoelectric composites for sensor and actuator applications. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 52, 746–775 (2005). https://doi.org/10.1109/TUFFC.2005.1503962

  2. 2.

    Bakhvalov, N., Panasenko, G.: Homogenisation: Averaging Processes in Periodic Media. Kluwer, London (1989)

  3. 3.

    Berger, H., Kari, S., Gabbert, U., Rodríguez-Ramos, R., Guinovart, R., Otero, J.A., Bravo-Castillero, J.: An analytical and numerical approach for calculating effective material coefficients of piezoelectric fiber composites. Int. J. Solids Struct. 42, 5692–5714 (2005). https://doi.org/10.1016/j.ijsolstr.2005.03.016

  4. 4.

    Berger, H., Kari, S., Gabbert, U., Rodriguez-Ramos, R., Bravo-Castillero, J., Guinovart-Diaz, R., Sabina, F.J., Maugin, G.A.: Unit cell models of piezoelectric fiber composites for numerical and analytical calculation of effective properties. Smart Mater. Struct. 15, 451–458 (2006). https://doi.org/10.1088/0964-1726/15/2/026

  5. 5.

    Berlincourt, D.A., Curran, D.R., Jaffe, H.: Piezoelectric and piezomagnetical materials and their function in transducers. In: Mason, W.P. (ed.) Physical Acoustics, pp. 169–270. Academic Press, New York (1964)

  6. 6.

    Bowen, C.R., Taylor, J., LeBoulbar, E., Zabek, D., Chauhan, A., Vaish, R.: Pyroelectric materials and devices for energy harvesting applications. Energy Environ. Sci. 7, 3836–3856 (2014). https://doi.org/10.1039/c4ee01759e

  7. 7.

    Bowen, C.R., Taylor, J., Le Boulbar, E., Zabeka, D., Topolov, V.Y.: A modified figure of merit for pyroelectric energy harvesting. Mater. Lett. 138, 243–246 (2015). https://doi.org/10.1016/j.matlet.2014.10.004

  8. 8.

    Boyer, F., Martin, S.: Introduction to the finite element method. Cienc. Mat. 30, 1–84 (2016)

  9. 9.

    Bravo-Castillero, J., Rodríguez-Ramos, R., Guinovart-Díaz, R., Sabina, F.J., Aguiar, A.R., Silva, U.P., Gómez-Muñoz, J.L.: Analytical formulae for electromechanical effective properties of 3–1 longitudinally porous piezoelectric materials. Acta Mater. 57, 795–803 (2009). https://doi.org/10.1016/j.actamat.2008.10.015

  10. 10.

    Bravo-Castillero, J., Guinovart-Díaz, R., Rodríguez-Ramos, R., Sabina, F.J., Brenner, R.: Unified analytical formulae for the effective properties of periodic fibrous composites. Mater. Lett. 73, 68–71 (2012a). https://doi.org/10.1016/j.matlet.2011.12.106

  11. 11.

    Bravo-Castillero, J., Rodríguez-Ramos, R., Guinovart-Díaz, R., Mechkour, H., Brenner, R., Camacho-Montes, H., Sabina, F.J.: Universal relations and effective coefficients of magneto-electro-elastic perforated structures. Q. J. Mech. Appl. Mech. 65, 61–85 (2012b). https://doi.org/10.1093/qjmam/hbr020

  12. 12.

    Bravo-Castillero, J., Sixto-Camacho, L.M., Brenner, R., Guinovart-Díaz, R., Pérez-Fernández, L.D., Rodríguez-Ramos, R., Sabina, F.J.: Temperature-related effective properties and exact relations for thermo-magneto-electro-elastic fibrous composites. Comput. Math. Appl. 69, 980–996 (2015). https://doi.org/10.1016/j.camwa.2015.03.005

  13. 13.

    Deutz, D.B., Pascoe, J.A., Schelen, B., van der Zwaag, S., de Leeuwa, D.M., Groen, P.: Analysis and experimental validation of the figure of merit for piezoelectric energy harvesters. Mater. Horiz. 5, 444–453 (2018). https://doi.org/10.1039/C8MH00097B

  14. 14.

    Galka, A., Telega, J.J., Wojnar, R.: Homogenization and thermopiezoelectricity. Mech. Res. Commun. 19, 315–324 (1992)

  15. 15.

    Galka, A., Telega, J.J., Wojnar, R.: Some computational aspects of homogenization of thermopiezoelectric composites. Comput. Assist. Mech. Eng. Sci. 3, 133–154 (1996)

  16. 16.

    Hecht, F.: New development in freefem++. J. Numer. Math. 20, 251–265 (2012). https://doi.org/10.1515/jnum-2012-0013

  17. 17.

    Kar-Gupta, R., Venkatesh, T.A.: Electromechanical response of porous piezoelectric materials. Acta Mater. 54, 4063–4078 (2006). https://doi.org/10.1016/j.actamat.2006.04.037

  18. 18.

    Kiran, R., Kumar, A., Kumar, R., Vaisha, R.: Effect of poling direction and porosity on piezoelectric figures of merit: A numerical study. Eur. Phys. J. Plus 134, 103–112 (2019). https://doi.org/10.1140/epjp/i2019-12458-8

  19. 19.

    Lewis, R.W.C., Dent, A.C.E., Stevens, R., Bowen, C.R.: Microstructural modelling of the polarization and properties of porous ferroelectrics. Smart Mater. Struct. 20, 085002 (2011). https://doi.org/10.1088/0964-1726/20/8/085002

  20. 20.

    Maruccio, C., De Lorenzis, L., Persano, L., Pisignano, D.: Computational homogenization of fibrous piezoelectric materials. Comput. Mech. 55, 983–998 (2015). https://doi.org/10.1007/s00466-015-1147-0

  21. 21.

    de Medeiros, R., Rodríguez-Ramos, R., Guinovart-Díaz, R., Bravo-Castillero, J., Otero, J.A., Tita, V.: Numerical and analytical analyses for active fiber composite piezoelectric composite materials. J. Intell. Mater. Syst. Struct. 26, 101–118 (2014). https://doi.org/10.1177/1045389X14521881

  22. 22.

    Oleinik, O.A., Shamaev, A.S., Yosifian, G.A.: Mathematical Problems in Elasticity and Homogenization, vol. 26. North Holland, Amsterdam (1992)

  23. 23.

    Pérez-Fernández, L.D., Bravo-Castillero, J., Rodríguez-Ramos, R., Sabina, F.J.: On the constitutive relations and energy potentials of linear thermo-magneto-electro-elasticity. Mech. Res. Commun. 36, 343–350 (2009). https://doi.org/10.1016/j.mechrescom.2008.10.003

  24. 24.

    Roscow, J., Zhang, Y., Taylor, J., Bowen, C.R.: Porous ferroelectrics for energy harvesting applications. Eur. Phys. J. Spec. Top. 224, 2949–2966 (2015). https://doi.org/10.1140/epjst/e2015-02600-y

  25. 25.

    Roscow, J.I., Lewis, R.W.C., Taylor, J., Bowen, C.R.: Modelling and fabrication of porous sandwich layer barium titanate with improved piezoelectric energy harvesting figures of merit. Acta Mater. 128, 207–17 (2017). https://doi.org/10.1016/j.actamat.2017.02.029

  26. 26.

    Roscow, J.I., Zhang, Y., Krasny, M.J., Lewis, R.W.C., Taylor, J., Bowen, C.R.: Freeze cast porous barium titanate for enhanced piezoelectric energy harvesting. J. Phys. D Appl. Phys. 51, 225301 (2018). https://doi.org/10.1088/1361-6463/aabc81

  27. 27.

    Roscow, J.I., Pearce, H., Khanbareh, H., Kar-Narayan, S., Bowen, C.R.: Modified energy harvesting figures of merit for stress- and strain-driven piezoelectric systems. Eur. Phys. J. Spec. Top. 228, 1537–1554 (2019). https://doi.org/10.1140/epjst/e2019-800143-7

  28. 28.

    Saad, Y., Schultz, M.H.: Gmres: A generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J. Sci. Stat. Comput. 7, 856–869 (1986). https://doi.org/10.1137/0907058

  29. 29.

    Sirohi, J., Chopra, I.: Fundamental understanding of piezoelectric strain sensors. J. Intell. Mater. Syst. Struct. Freq. Control 11, 246–257 (2000). https://doi.org/10.1106/8BFB-GC8P-XQ47-YCQ0

  30. 30.

    Sixto-Camacho, L.M., Bravo-Castillero, J., Brenner, R., Guinovart-Díaz, R., Mechkour, H., Rodríguez-Ramos, R., Sabina, F.J.: Asymptotic homogenization of periodic thermo-magneto-electro-elastic heterogeneous media. Comput. Math. Appl. 66, 2056–2074 (2013). https://doi.org/10.1016/j.camwa.2013.08.027

  31. 31.

    Xu, R., Kim, S.: Figures of merits of piezoelectric materials in energy harvesters. In: Proceedings of PowerMEMS 2012, pp. 464–467 (2012)

  32. 32.

    Zhang, Y., Xie, M., Roscow, J., Bao, Y., Zhou, K., Zhang, D., Bowen, C.R.: Enhanced pyroelectric and piezoelectric properties of PZT with aligned porosity for energy harvesting applications. J. Mater. Chem. A 5, 6569–6580 (2017). https://doi.org/10.1039/c7ta00967d

Download references

Acknowledgements

ROC acknowledges financial support of CONACYT during his Ph.D. studies at UNAM. RR thanks Departamento de Matemáticas y Mecánica, IIMAS and PREI-DGAPA at UNAM, for the support to his research project. The authors are thankful to Yan Zhang Ph.D. for providing the experimental data and Ana Pérez Arteaga and Ramiro Chávez Tovar for technical assistance. The authors thank the hospitality of IIMAS-UNAM (Mérida Campus) during their research visit. The authors thank Dr. Raúl Guinovart-Díaz for pointing out the typographic error of the formulae of [10] that is explained in detail in section 2.2. This work was supported by the Project PAPIIT-DGAPA-UNAM IA100919.

Author information

Correspondence to J. Bravo-Castillero.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

We illustrate the adimensionalization process in the problem \(L_2^q\) (expression (19)) as its associated effective coefficients were the most deviated when the material properties were entered in the program in their SI units without prefixes.

The tilde \(\widetilde{\cdot }\) indicates an adimensionalized coefficient. The subscript 0 indicates the adimensionalization/rescaling constants. The following parameters are introduced.

$$\begin{aligned} \widetilde{e}_{ijk}= & {} \frac{e_{ijk}}{e_0},\quad \widetilde{\kappa }^\varepsilon _{ij} = \frac{\kappa ^\varepsilon _{ij}}{\kappa _{0}},\quad \widetilde{c}_{ijkl} = \frac{c_{ijkl}}{c_0} \end{aligned}$$
(32)
$$\begin{aligned} \widetilde{g}_{k}^q= & {} \frac{g_{k}^q}{g_0},\quad \widetilde{y}_{j} = \frac{y_{j}}{L_0},\quad \widetilde{\pi }^q = \frac{\pi ^q}{L_0} \end{aligned}$$
(33)

By substituting these definitions in the first equation of (19) and dividing by \(e_0\), we obtain:

$$\begin{aligned} \frac{\partial }{\partial \widetilde{y}_j}\left( \widetilde{e}_{qij} + \frac{c_0g_0}{L_0 e_0}\widetilde{c}_{ijkl}\frac{\partial \widetilde{g}_k^{q}}{\partial \widetilde{y}_l}+ \widetilde{e}_{lij}\frac{\partial \widetilde{\pi }^{q}}{\partial \widetilde{y}_l}\right) = 0 \end{aligned}$$
(34)

Substituting in the second equation and dividing by \(\kappa _0\):

$$\begin{aligned} \frac{\partial }{\partial \widetilde{y}_j}\left( \widetilde{\kappa }^\varepsilon _{jq} - \frac{e_0g_0}{\kappa _0 L_0}\widetilde{e}_{jkl}\frac{\partial g_k^{q}}{\partial \widetilde{y}_l} + \widetilde{\kappa }^\varepsilon _{jl}\frac{\partial \pi ^{q}}{\partial \widetilde{y}_l}\right) = 0 \end{aligned}$$
(35)

In order to obtain the first equation with only adimensionalized coefficients, we set:

$$\begin{aligned} \frac{c_0g_0}{L_0 e_0} = 1 \implies g_0 = \frac{L_0 e_0}{c_0}. \end{aligned}$$
(36)

By introducing the expression of \(g_0\) found above and forcing the second equation to have only adimensionalized coefficients, we obtain the following relationship between the rescaling constants:

$$\begin{aligned} \frac{e_0g_0}{\kappa _0 L_0} = \frac{e_0^2 L_0}{\kappa _0 c_0 L_0} = 1 \implies c_0 = \frac{e_0^2}{\kappa _0}, \end{aligned}$$
(37)

and a local problem that is symbolically equivalent to the original formulation:

$$\begin{aligned} {\left\{ \begin{array}{ll} \frac{\partial }{\partial \widetilde{y}_j}\left( \widetilde{e}_{qij} + \widetilde{c}_{ijkl}\frac{\partial \widetilde{g}_k^{q}}{\partial \widetilde{y}_l}+\widetilde{e}_{lij}\frac{\partial \widetilde{\pi }^{q}}{\partial \widetilde{y}_l}\right) = 0,\quad i = 1,2,3\\ \frac{\partial }{\partial \widetilde{y}_j}\left( \widetilde{\kappa }^\varepsilon _{jq} - \widetilde{e}_{jkl}\frac{\partial \widetilde{g}_k^{q}}{\partial \widetilde{y}_l} + \widetilde{\kappa }^\varepsilon _{jl}\frac{\partial \widetilde{\pi }^{q}}{\partial \widetilde{y}_l}\right) = 0\\ \left( \widetilde{e}_{qij} + \widetilde{c}_{ijkl}\frac{\partial \widetilde{g}_k^{q}}{\partial \widetilde{y}_l}+\widetilde{e}_{lij}\frac{\partial \widetilde{\pi }^{q}}{\partial \widetilde{y}_l}\right) n_j = 0,\quad i = 1,2,3\\ \left( \widetilde{\kappa }^\varepsilon _{jq} - \widetilde{e}_{jkl}\frac{\partial \widetilde{g}_k^{q}}{\partial \widetilde{y}_l} + \widetilde{\kappa }^\varepsilon _{jl}\frac{\partial \widetilde{\pi }^{q}}{\partial \widetilde{y}_l}\right) n_j = 0. \end{array}\right. } \end{aligned}$$
(38)

The relationship (37) binds any of the three rescaling constants to the values of the other two. This gives us the freedom to select their values in a way that the resulting adimensionalized problem (38) does not have such a large difference in the orders of magnitude of the constants. The effective coefficients in terms of the adimensionalized constants have the following forms:

$$\begin{aligned} {\left\{ \begin{array}{ll} \widehat{e}_{qij} = e_0\left\langle \widetilde{e}_{qij} + \widetilde{c}_{ijkl}\frac{\partial \widetilde{g}_k^{q}}{\partial \widetilde{y}_l}+ \widetilde{e}_{lij}\frac{\partial \widetilde{\pi }^{q}}{\partial \widetilde{y}_l}\right\rangle ,\quad i = 1,2,3\\ \widehat{\kappa }_{jq} = \kappa _0\left\langle \widetilde{\kappa }^\varepsilon _{jq} - \widetilde{e}_{jkl}\frac{\partial \widetilde{g}_k^{q}}{\partial \widetilde{y}_l} + \widetilde{\kappa }^\varepsilon _{jl}\frac{\partial \widetilde{\pi }^{q}}{\partial \widetilde{y}_l}\right\rangle . \end{array}\right. } \end{aligned}$$
(39)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Caballero-Pérez, R.O., Bravo-Castillero, J., Pérez-Fernández, L.D. et al. Computation of effective thermo-piezoelectric properties of porous ceramics via asymptotic homogenization and finite element methods for energy-harvesting applications. Arch Appl Mech (2020). https://doi.org/10.1007/s00419-020-01675-6

Download citation

Keywords

  • Porous ceramics
  • Thermo-piezoelectric properties
  • Asymptotic homogenization
  • Finite element