Effects of Newtonian viscosity and relaxation on linear viscoelastic wave propagation

  • Andrzej Hanyga


In an important class of linear viscoelastic media the stress is the superposition of a Newtonian term and a stress relaxation term. It is assumed that the creep compliance is a Bernstein class function, which entails that the relaxation function is LICM. In this paper, the effect of Newtonian viscosity term on wave propagation is examined. It is shown that Newtonian viscosity dominates over the features resulting from stress relaxation. For comparison the effect of unbounded relaxation function is also examined. In both cases, the wave propagation speed is infinite, but the high-frequency asymptotic behavior of attenuation is different. Various combinations of Newtonian viscosity and relaxation functions, and the corresponding creep compliances are summarized.


Viscoelasticity Newtonian viscosity Stress relaxation function Creep compliance LICM functions Bernstein functions 

Mathematics Subject Classification

74D05 74J05 



  1. 1.
    Hanyga, A.: On solutions of matrix-valued convolution equations, CM-derivatives and their applications in linear and non-linear anisotropic viscoelasticity. Z. Angew. Math. Phys. 70, 103 (2019)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Hanyga, A.: Wave propagation in linear viscoelastic media with completely monotonic relaxation moduli. Wave Motion 50, 909–928 (2013)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Hrusa, W., Renardy, M.: A model equation for viscoelasticity with a strongly singular kernel. SIAM J. Math. Anal. 19, 257–269 (1988)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Hanyga, A., Seredyńska, M.: Some effects of the memory kernel singularity on wave propagation and inversion in poroelastic media. I. Forward modeling. Geophys. J. Int. 137, 319–335 (1994)CrossRefGoogle Scholar
  5. 5.
    Hanyga, A., Seredyńska, M.: Asymptotic ray theory in poro- and viscoelastic media. Wave Motion 30, 175–195 (1999)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Hanyga, A., Seredyńska, M.: Asymptotic and exact fundamental solutions in hereditary media with singular memory kernels. Q. Appl. Math. 60, 213–244 (2002)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Hanyga, A.: Wave propagation in media with singular memory. Math. Comput. Model. 34, 1399–1421 (2001)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Hanyga, A., Rok, V.: Wave propagation in micro-heterogeneous porous media. A model based on an integro-differential wave equation. J. Acoust. Soc. Am. 107, 2965 (2000)CrossRefGoogle Scholar
  9. 9.
    Hanyga, A., Seredyńska, M.: Power law attenuation in acoustic and isotropic anelastic media. Geophys. J. Int. 155, 810–818 (2003)CrossRefGoogle Scholar
  10. 10.
    Hanyga, A.: Attenuation and shock waves in linear hereditary viscoelastic media; Strick–Mainardi, Jeffreys–Lomnitz–Strick and Andrade creep compliances. Pure Appl. Geophys. 171, 2097–2109 (2014)CrossRefGoogle Scholar
  11. 11.
    Seredyńska, M., Hanyga, A.: A scalar model of viscoelasticity with singular memory. In: Fabrizio, M., Lazzari, B., Morro, A. (eds.) Mathematical Models and Methods for Smart Materials, pp. 329–341. World Scientific, River Edge (2002)CrossRefGoogle Scholar
  12. 12.
    Renardy, M.: Some remarks on the propagation and nonpropagation of discontinuities in linearly viscoelastic liquids. Rheol. Acta 21, 251–264 (1982)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Hrusa, W., Renardy, M.: On wave propagation in linear viscoelasticity. Q. Appl. Math. 43, 237–254 (1985)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Desch, W., Grimmer, R.: Singular relaxation moduli and smoothing in three-dimensional viscoelasticity. Trans. Am. Math. Soc. 314, 381–404 (1989)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Schilling, R.L., Song, R., Vondraček, Z.: Bernstein Functions: Theory and Applications. Walter De Gruyter, Boston (2012)CrossRefGoogle Scholar
  16. 16.
    Bingham, N.H., Goldie, C.M., Teugels, J.L.: Regular Variation. Cambridge University Press, Cambridge (1989)zbMATHGoogle Scholar
  17. 17.
    Hanyga, A.: Simple memory models of attenuation in complex viscoporous media. In: Proceedings of the 1st Canadian Conference on Nonlinear Solid Mechanics, Victoria, BC, 16–20 June 1999, vol. 2, pp. 420–436 (1999)Google Scholar
  18. 18.
    Hanyga, A.: On wave propagation in viscoelastic media with concave creep compliance. Q. J. Mech. Appl. Math. 67, 57–67 (2014)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.WarsawPoland

Personalised recommendations