Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Steady-state thermomechanical analysis of composite laminated plate with damage based on extended layerwise method

  • 71 Accesses

  • 1 Citations


A steady-state thermomechanical analysis model is established for the composite laminated plate with transverse cracks and delaminations based on the extended layerwise method. The one-dimensional weak and strong discontinuous functions are employed to simulate the interlaminar interfaces and the delaminations, respectively, while the transverse crack is simulated in the in-plane displacement fields by using the standard extended finite element method. The temperature field in the thickness direction is obtained by using a one-dimensional steady-state heat conduction equation and constructed with the linear Lagrange interpolation functions in the thickness direction. In several numerical examples, the proposed model is verified for the laminated plates with/without transverse crack and/or delaminations against the classic laminated plate theory, first-order shear deformation theory, Reddy’s layerwise theory or three-dimensional elastic model.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15


  1. 1.

    Argyris, J., Tenek, L.: Recent advances in computational thermostructural analysis of composite plates and shells with strong nonlinearities. Appl. Mech. Rev. 50, 285–306 (1997)

  2. 2.

    Noor, A., Malik, M.: An assessment of five modeling approaches for thermo-mechanical stress analysis of laminated composite panels. Comput. Mech. 25(1), 43–58 (2000)

  3. 3.

    Rolfes, R., Tessmer, J., Rohwer, K.: Models and tools for heat transfer, thermal stresses, and stability of composite aerospace structures. J. Thermal Stress. 26(6), 641–670 (2003)

  4. 4.

    Tungikar, V., Rao, K.M.: Three dimensional exact solution of thermal stresses in rectangular composite laminate. Compos. Struct. 27(4), 419–430 (1994)

  5. 5.

    Kant, T., Shiyekar, S.: An assessment of a higher order theory for composite laminates subjected to thermal gradient. Compos. Struct. 96, 698–707 (2013)

  6. 6.

    Ali, J.S.M., Bhaskar, K., Varadan, T.K.: A new theory for accurate thermal/mechanical flexural analysis of symmetric laminated plates. Compos. Struct. 45(3), 227–232 (1999)

  7. 7.

    Matsunaga, H.: Thermal buckling of angle-ply laminated composite and sandwich plates according to a global higher-order deformation theory. Compos. Struct. 72(2), 177–192 (2006)

  8. 8.

    Matsunaga, H.: Stress analysis of functionally graded plates subjected to thermal and mechanical loadings. Compos. Struct. 87(4), 344–357 (2009)

  9. 9.

    Kant, T., Shiyekar, S.M.: An assessment of a higher order theory for composite laminates subjected to thermal gradient. Compos. Struct. 96(4), 698–707 (2013)

  10. 10.

    Sciuva, M.D., Gherlone, M.: A global/local third-order hermitian displacement field with damaged interfaces and transverse extensibility: analytical formulation. Compos. Struct. 59(4), 419–431 (2003)

  11. 11.

    Cetkovic, M.: Thermo-mechanical bending of laminated composite and sandwich plates using layerwise displacement model. Compos. Struct. 125, 388–399 (2015)

  12. 12.

    Han, J.W., Kim, J.S., Cho, M.: Generalization of the c0-type zigzag theory for accurate thermomechanical analysis of laminated composites. Compos. B Eng. 122, 173–191 (2017)

  13. 13.

    Gherlone, M., Sciuva, M.D.: Thermo-mechanics of undamaged and damaged multilayered composite plates: a sub-laminates finite element approach. Compos. Struct. 81(1), 125–155 (2007)

  14. 14.

    Barbero, E.J.: On a generalized laminated plate theory with application to bending vibration and delamination buckling, Ph.D. thesis, Virginia Polytechnic Institute and State University (1989)

  15. 15.

    Barbero, E., Reddy, J.: Modeling of delamination in composite laminates using a layer-wise plate theory. Int. J. Solids Struct. 28(3), 373–388 (1991)

  16. 16.

    Barbero, E.J., Reddy, J.N.: Nonlinear analysis of composite laminates using a generalized laminated plate theory. AIAA J. 28(11), 1987–1994 (1990)

  17. 17.

    Reddy, J.N.: Mechanics of Laminated Composite Plates and Shells: Theory and Analysis. CRC Press, Boca Raton (2004)

  18. 18.

    Whitney, J.M.: The effect of transverse shear deformation on the bending of laminated plates. J. Compos. Mater. 3(3), 534–547 (1969)

  19. 19.

    Ferreira, A.J.M.: Analysis of composite plates using a layerwise theory and multiquadrics discretization. Mech. Adv. Mater. Struct. 12(2), 99–112 (2005)

  20. 20.

    Ferreira, A.J.M., Roque, C.M.C., Jorge, R.M.N., Kansa, E.J.: Static deformations and vibration analysis of composite and sandwich plates using a layerwise theory and multiquadrics discretizations. Eng. Anal. Bound. Elem. 29(12), 1104–1114 (2005)

  21. 21.

    Ferreira, A.J.M., Carrera, E., Cinefra, M., Roque, C.M.C.: Analysis of laminated doubly-curved shells by a layerwise theory and radial basis functions collocation, accounting for through-the-thickness deformations. Comput. Mech. 48(1), 13–25 (2011)

  22. 22.

    Ferreira, A.J.M., Fasshauer, G.E., Batra, R.C., Rodrigues, J.D.: Static deformations and vibration analysis of composite and sandwich plates using a layerwise theory and rbf-ps discretizations with optimal shape parameter. Compos. Struct. 86(4), 328–343 (2008)

  23. 23.

    Kim, Y.-W., Lee, H.-Y., Yoo, B.: Numerical evaluation of stress intensity factor for vessel and pipe subjected to thermal shock. Int. J. Press. Vessels Pip. 58(2), 215–222 (1994)

  24. 24.

    Jin, Z., Batra, R.: Stress intensity relaxation at the tip of an edge crack in a functionally graded material subjected to a thermal shock. J. Thermal Stress. 19(4), 317–339 (1996)

  25. 25.

    Hosseini-Tehrani, P., Eslami, M., Daghyani, H.: Dynamic crack analysis under coupled thermoelastic assumption. J. Appl. Mech. 68(4), 584–588 (2001)

  26. 26.

    Duflot, M.: The extended finite element method in thermoelastic fracture mechanics. Int. J. Numer. Methods Eng. 74(5), 827–847 (2008)

  27. 27.

    Zamani, A., Eslami, M.R.: Implementation of the extended finite element method for dynamic thermoelastic fracture initiation. Int. J. Solids Struct. 47(10), 1392–1404 (2010)

  28. 28.

    Zamani, A., Gracie, R., Eslami, M.R.: Higher order tip enrichment of extended finite element method in thermoelasticity. Comput. Mech. 46(6), 851–866 (2010)

  29. 29.

    Panda, S., Pradhan, B.: Thermoelastic analysis of the asymmetries of interfacial embedded delamination characteristics in laminated frp composites. Compos. A Appl. Sci. Manuf. 38(2), 337–347 (2007)

  30. 30.

    Shu, X.: Thermoelastic delamination of composite laminates with weak interfaces. Compos. Struct. 84(4), 310–318 (2008)

  31. 31.

    Li, D.H., Liu, Y., Zhang, X.: An extended layerwise method for composite laminated beams with multiple delaminations and matrix cracks. Int. J. Numer. Methods Eng. 101(6), 407–434 (2015)

  32. 32.

    Li, D.H.: Delamination and transverse crack growth prediction for laminated composite plates and shells. Comput. Struct. 177, 39–55 (2016)

  33. 33.

    Li, D.H., Zhang, X., Sze, K.Y., Liu, Y.: Extended layerwise method for laminated composite plates with multiple delaminations and transverse cracks. Comput. Mech. 58(4), 657–679 (2016)

  34. 34.

    Li, D.H., Zhang, F., Xu, J.X.: Incompatible extended layerwise method for laminated composite shells. Int. J. Mech. Sci. 119, 243–252 (2016)

  35. 35.

    Li, D., Zhang, F.: Full extended layerwise method for the simulation of laminated composite plates and shells. Comput. Struct. 187, 101–113 (2017)

  36. 36.

    Li, D.H.: Extended layerwise method of laminated composite shells. Compos. Struct. 136(3), 313–344 (2016)

  37. 37.

    Pagano, N.J.: Exact Solutions for Rectangular Bidirectional Composites and Sandwich Plates. Springer, Dordrecht (1994)

Download references

Author information

Correspondence to Dinghe Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supported by the Natural Science Foundations of China (U1933102), Natural Science Foundations of Tianjin (17JCQNJC02600), Research Funds of Tianjin Municipal Education Commission (2018KJ241) and Fundamental Research Funds for the Central Universities (3122017021).

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, D., Shan, W. & Zhang, F. Steady-state thermomechanical analysis of composite laminated plate with damage based on extended layerwise method. Arch Appl Mech 90, 415–435 (2020).

Download citation


  • Thermomechanical analysis
  • Steady-state
  • Composite laminated plate
  • Extended layerwise method
  • Transverse cracks
  • Delaminations