Anisotropic multiferroic ellipsoidal particulate composites

  • Hsin-Yi KuoEmail author
  • Yu-Hsiang Ling


The objective of this work is to investigate the magnetoelectricity (ME) of an ellipsoidal particulate composite made of piezoelectric and piezomagnetic phases. We employ a micromechanical model, the Mori–Tanaka mean-field method, to evaluate the effects of crystallographic orientations of the constituents, and the aspect ratio, volume fraction, and orientations of the ellipsoids. We compare this micromechanical solution with those predicted by the finite element analysis, which provides the benchmark results for a periodic array of inclusions. Based on this model, we find the optimal aspect ratio and volume fractions of the inclusion when the ellipsoids are poled along the normal direction. Further, we show that, for the case of \(\hbox {CoFe} _{2}\hbox {O}_{4}\)\(\hbox {BaTiO}_{{3}}\) ellipsoidal particulate composite, the ME voltage coefficient can be enhanced at the optimal orientation as compared to those at normal cut.


Magnetoelectricity Piezoelectric-piezomagnetic Anisotropy Ellipsoidal particulate composites 



We are grateful to the financial support of National Science Council, Taiwan, under Contract No. NSC 100-2628-E-009-022-MY2.


  1. 1.
    Aboudi, J.: Micromechanical analysis of fully coupled electro-magneto-thermo-elastic multiphase composites. Smart Mater. Struct. 10, 867–877 (2001)CrossRefGoogle Scholar
  2. 2.
    Alshits, V.I., Darinskii, A.N., Lothe, J.: On the existence of surface waves in half-infnite anisotropic elastic media with piezoelectric and piezomagnetic properties. Wave Motions 16, 265–284 (1992)CrossRefGoogle Scholar
  3. 3.
    Arfken, G.B., Weber, H.J.: Mathematical Methods for Physicists, p. 199. Academic Press, San Diago (2001)zbMATHGoogle Scholar
  4. 4.
    Avakian, A., Gellmann, R., Ricoeur, A.: Nonlinear modeling and finite element simulation of magnetoelectric coupling and residual stress in multiferroic composites. Acta Mech. 226, 2789–2806 (2015)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Avakian, A., Ricoeur, A.: Constitutive modeling of nonlinear reversible and irreversible ferromagnetic behaviors and application to multiferroic composites. J. Intell. Mater. Syst. Struct. 27, 2536–2554 (2016)CrossRefGoogle Scholar
  6. 6.
    Bayrashev, A., Robbins, W.P., Ziaie, B.: Low frequency wireless powering of microsystems using piezoelectric–magnetostrictive laminate composites. Sens. Actuators 114, 244–249 (2004)CrossRefGoogle Scholar
  7. 7.
    Benveniste, Y.: Magnetoelectric effect in fibrous composites with piezoelectric and piezomagnetic phases. Phys. Rev. B 51, 16424–16427 (1995)CrossRefGoogle Scholar
  8. 8.
    Bichurin, M.I., Petrov, V.M., Averkin, S.V., Liverts, E.: Present status of theoretical modeling the magnetoelectric effect in magnetostrictive-piezoelectric nanostructures. Part I: low frequency electromechanical resonance ranges. J. Appl. Phys. 107, 053904 (2010)CrossRefGoogle Scholar
  9. 9.
    Camacho-Montes, H., Sabina, F.J., Bravo-Castillero, J., Guinovart-Díaz, R., Rodríguez-Ramos, R.: Magnetoelectric coupling and cross-property connections in a square array of a binary composite. Int. J. Eng. Sci. 47, 294–312 (2009)CrossRefGoogle Scholar
  10. 10.
    Eerenstein, W., Mathur, N.D., Scott, J.F.: Multiferroic and magnetoelectric materials. Nature 442, 759–765 (2006)CrossRefGoogle Scholar
  11. 11.
    Fiebig, M.: Revival of the magnetoelectric effect. J. Phys. D Appl. Phys. 38, R123–R152 (2005)CrossRefGoogle Scholar
  12. 12.
    Huang, J.H., Kuo, W.-S.: The analysis of piezoelectric/piezomagnetic composite materials containing ellipsoidal inclusions. J. Appl. Phys. 81, 1378–1386 (1997)CrossRefGoogle Scholar
  13. 13.
    Kim, J.-Y.: Micromechanical analysis of effective properties of magneto-electro-thermo-elastic multilayer composites. Int. J. Eng. Sci. 49, 1001–1018 (2011)CrossRefGoogle Scholar
  14. 14.
    Kuo, H.-Y.: Multicoated elliptic fibrous composites of piezoelectric and piezomagnetic phases. Int. J. Eng. Sci. 49, 561–575 (2011)CrossRefGoogle Scholar
  15. 15.
    Kuo, H.-Y.: Fibrous composites of piezoelectric and piezomagnetic phases: generalized plane strain with transverse electromagnetic fields. Mech. Mater. 75, 103–110 (2014)CrossRefGoogle Scholar
  16. 16.
    Kuo, H.-Y., Bhattacharya, K.: Fibrous composites of piezoelectric and piezomagnetic phases. Mech. Mater. 60, 159–170 (2013)CrossRefGoogle Scholar
  17. 17.
    Kuo, H.-Y., Chen, C.-Y.: Decoupling transformation for piezoelectric–piezomagnetic fibrous composites with imperfect interfaces. Int. J. Solids Struct. 54, 111–120 (2015)CrossRefGoogle Scholar
  18. 18.
    Kuo, H.-Y., Hsin, K.-H.: Functionally graded piezoelectric–piezomagnetic fibrous composites. Acta Mech. 229, 1503–1516 (2018)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Kuo, H.-Y., Huang, T.-Y.: Effective moduli of multiferroic fibrous composites with spring-type imperfect interfaces under generalized plane strain with transverse electromagnetic fields. Int. J. Solids Struct. 80, 456–464 (2016)CrossRefGoogle Scholar
  20. 20.
    Kuo, H.-Y., Kuo, Y.-M.: Magnetoelectricity in multiferroic particulate composites with arbitrary crystallographic orientation. Smart Mater. Struct. 21, 105038 (2012)CrossRefGoogle Scholar
  21. 21.
    Kuo, H.-Y., Pan, E.: Effective magnetoelectric effect in multicoated circular fibrous multiferroic composites. J. Appl. Phys. 109, 104901 (2011)CrossRefGoogle Scholar
  22. 22.
    Kuo, H.-Y., Wang, Y.-L.: Optimization of magnetoelectricity in multiferroic fibrous composites. Mech. Mater. 50, 88–99 (2012)CrossRefGoogle Scholar
  23. 23.
    Kuo, H.-Y., Wang, K.-H.: Size-dependent effective behaviors of multiferroic fibrous composites with interface stress. Int. J. Solids Struct. 106–107, 164–173 (2017)CrossRefGoogle Scholar
  24. 24.
    Kuo, H.-Y., Slinger, A., Bhattacharya, K.: Optimization of magnetoelectricity in piezoelectric–magnetostrictive bilayers. Smart Mater. Struct. 19, 125010 (2010)CrossRefGoogle Scholar
  25. 25.
    Kumar, A., Sharma, G.L., Katiyar, R.S., Pirc, R., Blinc, R., Scott, J.F.: Magnetic control of large room-temperature polarization. J. Phys. Condens. Matter 21, 382204 (2009)CrossRefGoogle Scholar
  26. 26.
    Labusch, M., Etier, M., Lupascu, D.C., Schröder, J., Keip, M.-A.: Product properties of a two-phase magneto-electric composite: synthesis and numerical modeling. Comput. Mech. 54, 71–83 (2014)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Labusch, M., Schröder, J., Lupascu, D.C.: A two-scale homogenization analysis of porous magneto-electric two-phase composites. Arch. Appl. Mech. 89, 1123–1140 (2019)CrossRefGoogle Scholar
  28. 28.
    Lee, J., Boyd IV, J.G., Lagoudas, D.C.: Effective properties of three-phase electro-magneto-elastic composites. Int. J. Eng. Sci. 43, 790–825 (2005)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Li, J.Y.: Magnetoelectroelastic multi-inclusion and inhomogeneity problems and their applications in composite materials. Int. J. Eng. Sci. 38, 1993–2001 (2000)CrossRefGoogle Scholar
  30. 30.
    Li, J.Y., Dunn, M.L.: Micromechanics of magnetoelectroelastic composite materials: average fields and effective behaviour. J. Intell. Mater. Syst. Struct. 9, 404–416 (1998a)CrossRefGoogle Scholar
  31. 31.
    Li, J.Y., Dunn, M.L.: Anisotropic coupled-field inclusion and inhomogeneity problems. Philos. Mag. A 77, 1341–1350 (1998b)CrossRefGoogle Scholar
  32. 32.
    Liu, G., Nan, C.-W., Cai, N., Lin, Y.: Calculations of giant magnetoelectric effect in multiferroic composites of rare-earth-iron alloys and PZT by finite element method. Int. J. Solids Struct. 41, 4423–4434 (2004)CrossRefGoogle Scholar
  33. 33.
    Michel, J., Moulinec, H., Suquet, P.: Effective properties of composite materials with periodic microstructure: a computational approach. Comput. Meth. Appl. Mech. Eng. 172, 109–143 (1999)MathSciNetCrossRefGoogle Scholar
  34. 34.
    Nan, C.-W.: Magnetoelectric effect in composites of piezoelectric and piezomagnetic phases. Phys. Rev. B 50, 6082–6088 (1994)CrossRefGoogle Scholar
  35. 35.
    Nan, C.-W., Bichurin, M.I., Dong, S., Viehland, D., Srinivasan, G.: Multiferroic magnetoelectric composites: historical perspective, status, and future directions. J. Appl. Phys. 103, 031101 (2008)CrossRefGoogle Scholar
  36. 36.
    Nye, J.F.: Physical Properties of Crystals. Oxford University Press, Oxford (1985)Google Scholar
  37. 37.
    Ricoeur, A., Lange, S.: Constitutive modeling of polycrystalline multiconstituent and multiphase ferroic materials based on a condensed approach. Arch. Appl. Mech. 89, 973–994 (2019)CrossRefGoogle Scholar
  38. 38.
    Schröder, J., Keip, M.-A.: Two-scale homogenization of electromechanically coupled boundary value problems. Comput. Mech. 50, 229–244 (2012)MathSciNetCrossRefGoogle Scholar
  39. 39.
    Srinivas, S., Li, J.Y., Zhou, Y.C., Soh, A.K.: The effective magnetoelectroelastic moduli of matrix-based multiferroic composites. J. Appl. Phys. 99, 043905 (2006)CrossRefGoogle Scholar
  40. 40.
    Tang, T., Yu, W.: Variational asymptotic homogenization of heterogeneous electromagnetoelastic materials. Int. J. Eng. Sci. 46, 741–757 (2008)MathSciNetCrossRefGoogle Scholar
  41. 41.
    Tang, T., Yu, W.: Micromechanical modeling of the multiphysical behavior of smart materials using the variational asymptotic method. Smart Mater. Struct. 18, 125026 (2009)CrossRefGoogle Scholar
  42. 42.
    Terada, K., Saiki, I., Matsui, K., Yamakawa, Y.: Two-scale kinematics and linearization for simultaneous two-scale analysis of periodic heterogeneous solids at finite strain. Comput. Methods Appl. Mech. Eng. 192, 3531–3563 (2003)MathSciNetCrossRefGoogle Scholar
  43. 43.
    Wang, Y., Or, S.W., Chan, H.L.W., Zhao, X., Luo, H.: Enhanced magnetoelectric effect in longitudinal-transverse mode Terfenol-D/Pb(\(\text{ Mg }_{1/3}\)Nb\(_{2/3}\))\(\text{ O }_{{3}}\)-\(\text{ PbTiO }_{{3}}\) laminate composites with optimal crystal cut. J. Appl. Phys. 103, 124511 (2008)CrossRefGoogle Scholar
  44. 44.
    Yang, P., Zhao, K., Yin, Y., Wan, H.G., Shu, J.S.: Magnetoelectric effect in magnetostrictive/piezoelectric laminate composite Terfenol-D/ \(\text{ LiNbO }_{{3}}\)[(zxtw)129\(^{\circ }\)/30\(^{\circ }\)]. Appl. Phys. Lett. 88, 172903 (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Civil EngineeringNational Chiao Tung UniversityHsinchuTaiwan

Personalised recommendations