Advertisement

Archive of Applied Mechanics

, Volume 89, Issue 11, pp 2215–2228 | Cite as

In-plane vibration of a circular ring with arbitrary concentrated elements by an analytical method

  • Mingchang NiuEmail author
  • Jinpeng Su
  • Zhenguo Zhang
  • Hongxing Hua
Original
  • 72 Downloads

Abstract

This paper investigates the vibration characteristics of a circular ring with an arbitrary number of concentrated elements based on the Hamilton principle. The shear and inertia effects are introduced to the variational functional of system kinetic and potential energy by adopting the generalized shell theory. The concentrated elements are treated as the concentrated masses with elastic boundary condition. The system vibration displacements are analytically expanded in the form of Fourier series and substituted into the variational functional to obtain the equation of motion. Computed results are compared with those solutions obtained from the finite element program ANSYS to validate the accuracy of the present method. Effects of the asymmetrical concentrated elements on the convergence of circumferential wavenumbers are discussed. Moreover, the coupling characteristics of different circumferential wavenumbers caused by the asymmetrical or symmetrical concentrated elements and their influences on the vibration response characteristics of the system under simple harmonic excitations are studied.

Keywords

Vibration characteristics Circular ring Concentrated elements Circumferential wavenumber 

Notes

Acknowledgements

The authors are grateful to acknowledge that this study is financially supported by Institute of Vibration Shock and Noise, Shanghai Jiao Tong University.

References

  1. 1.
    Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity, 4th edn, pp. 444–454. Dover, New York (1944)Google Scholar
  2. 2.
    Lee, S.Y., Chao, J.C.: Out-of-plane vibrations of curved non-uniform beams of constant radius. J. Sound. Vib. 238(3), 443–458 (2000)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Thomas, D.L., Wilson, J.M., Wilson, R.R.: Timoshenko beam finite elements. J. Sound. Vib. 31(3), 315–330 (1973)CrossRefGoogle Scholar
  4. 4.
    Auciello, N.M., De Rosa, M.A.: Free vibrations of circular arches: a review. J. Sound. Vib. 176(4), 433–458 (1994)CrossRefGoogle Scholar
  5. 5.
    Veletsos, A.S., Austin, W.J., Lopes Pereira, C.A., Wung, S.J.: Free in-plane vibration of circular arches. J. Eng. Mech. ASCE 98, 311–329 (1972)Google Scholar
  6. 6.
    Charpie, J.P., Burroughs, C.B.: An analytic model for the free in-plane vibration of beams of variable curvature and depth. J. Acoust. Soc. Am. 94(2), 866–879 (1993)CrossRefGoogle Scholar
  7. 7.
    Chidamparam, P., Leissa, A.W.: Vibrations of planar curved beams, rings, and arches. Appl. Mech. Rev. 46(9), 467–483 (1993)CrossRefGoogle Scholar
  8. 8.
    Den Hartog, J.P.: The lower natural frequency of circular arcs. Philos. Mag. 5(7), 400–408 (1928)CrossRefGoogle Scholar
  9. 9.
    Morley, L.S.D.: The flexural vibrations of a cut thin ring. Q. J. Mech. Appl. Math. 11, 491–497 (1958)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Mau, S.T., Williams, A.N.: Green’s function solution for arch vibration. J. Eng. Mech. 114, 1259–1264 (1988)CrossRefGoogle Scholar
  11. 11.
    Suzuki, K., Takahashi, S.: In-plane vibrations of curved bars with varying cross-section. Bull. JSME 25, 1100–1107 (1982)CrossRefGoogle Scholar
  12. 12.
    Rao, S.S., Sundararajan, V.: In-plane flexural vibrations of circular rings. Int. J. Appl. Mech. 36(3), 620–625 (1969)CrossRefGoogle Scholar
  13. 13.
    Laura, P.A.A., Bambill, E., Filipich, C.P., Rossi, R.E.: A note on free flexural vibrations of a non-uniform elliptical ring in its plane. J. Sound. Vib. 126(2), 249–254 (1988)CrossRefGoogle Scholar
  14. 14.
    Friedman, Z., Kosmatka, J.B.: An accurate two-node finite element for shear deformable curved beams. Int. J. Numer. Methods Eng. 41(3), 473–498 (1998)CrossRefGoogle Scholar
  15. 15.
    Lecoanet, H., Piranda, J.: Inplane vibrations of circular rings with a radically variable thickness. J. Vib. Acoust. Stress Reliab. 105, 137–143 (1983)CrossRefGoogle Scholar
  16. 16.
    Raveendranath, P., Singh, G., Venkateswara Rao, G.: A three-noded shear-flexible curved beam element based on coupled displacement field interpolations. Int. J. Numer. Methods Eng. 51(1), 85–101 (2001)CrossRefGoogle Scholar
  17. 17.
    Zhu, Z.H., Meguid, S.A.: Vibration analysis of a new curved beam element. J. Sound. Vib. 309(1–2), 86–95 (2008)CrossRefGoogle Scholar
  18. 18.
    Yang, F., Sedaghati, R., Esmailzadeh, E.: Free in-plane vibration of general curved beams using finite element method. J. Sound. Vib. 318(4–5), 850–867 (2008)CrossRefGoogle Scholar
  19. 19.
    Cannarozzi, M., Molari, L.: A mixed stress model for linear elastodynamics of arbitrarily curved beams. Int. J. Numer. Methods Eng. 74(1), 116–137 (2008)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Kim, J.G., Kim, Y.Y.: A new higher-order hybrid-mixed curved beam element. Int. J. Numer. Methods Eng. 43(5), 925–940 (1998)CrossRefGoogle Scholar
  21. 21.
    Kim, J.G., Kim, Y.Y.: A higher-order hybrid-mixed harmonic shell-of-revolution element. Comput. Methods Appl. Mech. Eng. 182(1–2), 1–16 (2000)zbMATHGoogle Scholar
  22. 22.
    Kim, J.G., Park, Y.K.: Hybrid-mixed curved beam elements with increased degrees of freedom for static and vibration analyses. Int. J. Numer. Methods Eng. 68(6), 690–706 (2006)CrossRefGoogle Scholar
  23. 23.
    Kim, J.G., Lee, J.K.: Free-vibration analysis of arches based on the hybrid-mixed formulation with consistent quadratic stress functions. Comput. Struct. 86(15–16), 1672–1681 (2008)CrossRefGoogle Scholar
  24. 24.
    Kang, K., Bert, C.W., Striz, A.G.: Vibration analysis of shear deformable circular arches by the differential quadrature method. J. Sound. Vib. 183(2), 353–360 (1995)CrossRefGoogle Scholar
  25. 25.
    Tong, X., Mrad, N., Tabarrok, B.: In-plane vibration of circular arches with variable cross-sections. J. Sound. Vib. 212(1), 121–140 (1998)CrossRefGoogle Scholar
  26. 26.
    Öztürk, H., Yeşilyurt, İ., Sabuncu, M.: In-plane stability analysis of non-uniform cross-sectioned curved beams. J. Sound. Vib. 296(1–2), 277–291 (2006)CrossRefGoogle Scholar
  27. 27.
    Lee, S.Y., Hsiao, J.Y.: Free in-plane vibrations of curved nonuniform beams. Acta Mech. 155(3–4), 173–189 (2002)CrossRefGoogle Scholar
  28. 28.
    Huang, X., Hua, H., Wang, Y., Du, Z.: Research on wave mode conversion of curved beam structures by the wave approach. J. Vib. Acoust. 135(3), 031014 (2013)CrossRefGoogle Scholar
  29. 29.
    Lei, Z., Su, J., Hua, H.: Longitudinal and transverse coupling dynamic properties of a Timoshenko beam with mass eccentricity. Int. J. Struct. Stab. Dyn. 17(7), 1–17 (2017)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Su, J., Lei, Z., Hua, H.: Axial-bending coupling vibration of mass eccentric double-beam system with discrete elastic connections. Proc. Inst. Mech. Eng. Part M J. Eng. Marit. Environ. 231(2), 555–568 (2017)Google Scholar
  31. 31.
    Wu, J.S., Lin, F.T., Shaw, H.J.: Free in-plane vibration analysis of a curved beam (arch) with arbitrary various concentrated elements. Appl. Math. Model. 37(14–15), 7588–7610 (2013)MathSciNetCrossRefGoogle Scholar
  32. 32.
    Su, J., Zhou, K., Qu, Y., Hua, H.: A variational formulation for vibration analysis of curved beams with arbitrary eccentric concentrated elements. Arch. Appl. Mech. 88(7), 1089–1104 (2018)CrossRefGoogle Scholar
  33. 33.
    Kim, J.G., Lee, J.K., Yoon, H.J.: On the effect of shear coefficients in free vibration analysis of curved beams. J. Mech. Sci. Technol. 28(8), 3181–3187 (2014)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Mingchang Niu
    • 1
    Email author
  • Jinpeng Su
    • 1
  • Zhenguo Zhang
    • 1
  • Hongxing Hua
    • 1
  1. 1.State Key Laboratory of Mechanical System and Vibration, Institute of Vibration Shock and NoiseShanghai Jiao Tong UniversityShanghaiChina

Personalised recommendations