Motion spaces of machine–process combinations

  • Friedrich PfeifferEmail author


Machines and mechanisms realize processes, from the shaping process of a milling machine to the motion process of an automotive system. The dynamics of a machine generated by a properly chosen set of constraints in combination with an appropriate drive system is designed to meet the prescribed requirements of the process, which is done by projecting the machine equations of motion on the process dynamics. We get a set of nonlinear relations, which represent the machine motion in terms of the required process motion. A well-known example is the projection of arbitrarily many robot degrees of freedom on one given path degree of freedom resulting in a set for evaluating possible motion spaces, now supplemented also by constraint force spaces, helpful for design and optimization. For multidimensional processes, things become more complex but feasible. This paper presents a corresponding approach applying multibody system theory in combination with transformations from the machine side to the process side and vice versa. Practical aspects are discussed and examples given.


Multibody systems Lagrange I Constraints and constraint forces Machine–process combination Projections 



  1. 1.
    Abraham, R., Marsden, J.E.: Foundations of Mechanics. Westview, Perseus Books Group, Cambridge (1978)zbMATHGoogle Scholar
  2. 2.
    Angeles, J.: Fundamentals of Robotic Mechanical Systems. Springer, New York (1997)CrossRefzbMATHGoogle Scholar
  3. 3.
    Arnold, V.I.: Mathematical Methods of Classical Mechanics, 2nd edn. Springer, New York (1989)CrossRefGoogle Scholar
  4. 4.
    Bobrow, J.E., Dubowsky, S., Gibson, J.S.: Time optimal control of robotic manipulators along specified paths. Int. J. Robot. Res. 4, 3–17 (1985)CrossRefGoogle Scholar
  5. 5.
    Bremer, H.: Elastic Multibody Dynamics. Springer, New York (2008)CrossRefzbMATHGoogle Scholar
  6. 6.
    Dresig, H., Vul’fson, I.I.: Dynamik der Mechanismen. Springer, New York (1989)CrossRefzbMATHGoogle Scholar
  7. 7.
    Dubowsky, S., Shiller, Z.: Optimal dynamic trajectories for robotic manipulators. In: Proceedings of 5th Symposium on Theory and Practice of Robotics and Manipulators (1985)Google Scholar
  8. 8.
    Duschek, A., Hochrainer, A.: Grundzüge der Tensorrechnung in analytischer Darstellung. Springer, New York (1960)zbMATHGoogle Scholar
  9. 9.
    Jacobi, C.G.J.: Vorlesungen über Dynamik. Edited by A. Clebsch, Berlin (1866)Google Scholar
  10. 10.
    Johanni, R.: Optimale Bahnplanung bei Robotern. Fortschritt-Berchte VDI, Reihe 18, Nr. 51, VDI-Verlag, Düsseldorf (1988)Google Scholar
  11. 11.
    Nolte, D.D.: Introduction to Modern Dynamics. Oxford University Press, Oxford (2015)zbMATHGoogle Scholar
  12. 12.
    Pfeiffer, F.: Optimal Trajectory Planning for Manipulators, Systems and Control Encyclopedia. Pergamon Press, Oxford (1990)Google Scholar
  13. 13.
    Pfeiffer, F.: Mechanical System Dynamics. Springer, Heidelberg (2008)CrossRefzbMATHGoogle Scholar
  14. 14.
    Pfeiffer, F., Schindler, Th: Introduction to Dynamics. Springer, Berlin (2015)CrossRefzbMATHGoogle Scholar
  15. 15.
    Rajeev, S.G.: Advanced Mechanics. Oxford University Press, Oxford (2013)CrossRefzbMATHGoogle Scholar
  16. 16.
    Richter, K.: Kraftregelung elastischer Roboter. Fortschritt-Berichte VDI, Reihe 8, Nr. 259, VDI-Verlag, Düsseldorf (1991)Google Scholar
  17. 17.
    Wittenburg, J.: Kinematics. Springer, Heidelberg (2016)CrossRefzbMATHGoogle Scholar
  18. 18.
    Woernle, C.: Mehrkörpersysteme, 2nd edn. Springer, Berlin (2016)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Lehrstuhl fuer Angewandte Mechanik, TU-MuenchenGarchingGermany

Personalised recommendations