Advertisement

A review of mechanical analyses of rectangular nanobeams and single-, double-, and multi-walled carbon nanotubes using Eringen’s nonlocal elasticity theory

  • Chih-Ping WuEmail author
  • Jung-Jen Yu
Article
  • 68 Downloads

Abstract

This article is intended to present an overview of various mechanical analyses of rectangular nanobeams and single-, double-, and multi-walled (SW-, DW-, and MW-) carbon nanotubes (CNTs) with combinations of simply supported, free, and clamped edge conditions embedded or non-embedded in an elastic medium, including bending, free vibration, buckling, coupled thermo-elastic and hygro-thermo-elastic, dynamic instability, wave propagation, geometric nonlinear bending, and large amplitude vibration analyses. This review introduces the development of various nonlocal beam and shell theories incorporating Eringen’s nonlocal elasticity theory and the application of strong- and weak-form-based formulations to the current issue. Based on the principle of virtual displacements and Reissner’s mixed variational theorem, the corresponding strong- and weak-form formulations of the local Timoshenko beam theory are reformulated for the free vibration analysis of rectangular nanobeams and SW-, DW-, and MW-CNTs, and presented for illustrative purposes. A comparative study of the results obtained using assorted nonlocal beam and shell theories in combination with the analytical and numerical methods is carried out.

Keywords

Carbon nanotubes Eringen’s nonlocal elasticity theory Principle of virtual displacements Reissner’s mixed variational theorem Review Timoshenko beam theory 

Notes

Acknowledgements

This work was supported by the Ministry of Science and Technology of the Republic of China through Grant MOST 106-2221-E-006-036-MY3.

References

  1. 1.
    Iijima, S.: Helica microtubes of graphitic carbon. Nature 354, 56–58 (1991)CrossRefGoogle Scholar
  2. 2.
    Li, C., Thostenson, E.T., Chou, T.W.: Sensors and actuators based on carbon nanotubes and their composites: a review. Compos. Sci. Technol. 68, 1227–1249 (2008)CrossRefGoogle Scholar
  3. 3.
    Gao, C., Guo, Z., Liu, J.H., Huang, X.J.: The new age of carbon nanotubes: an updated review of functionalized carbon nanotubes in electrochemical sensors. Nanoscale 4, 1948–1963 (2012)CrossRefGoogle Scholar
  4. 4.
    Wang, Q., Arash, B.: A review on applications of carbon nanotubes and graphenes as nano-resonator sensors. Comput. Mater. Sci. 82, 350–360 (2014)CrossRefGoogle Scholar
  5. 5.
    Chen, W.X., Tu, J.P., Wang, L.Y., Gan, H.Y., Xu, Z.D., Zhang, X.B.: Tribological application of carbon nanotubes in a metal-based composite coating and composites. Carbon 41, 215–222 (2003)CrossRefGoogle Scholar
  6. 6.
    Mittal, G., Dhand, V., Rhee, K.Y., Park, S.J., Lee, W.R.: A review on carbon nanotubes and graphenes as fillers in reinforced polymer nanocomposites. J. Ind. Eng. Chem. 21, 11–25 (2015)CrossRefGoogle Scholar
  7. 7.
    Janas, D., Koziol, K.K.: A review of production methods of carbon nanotube and graphene thin films for electrothermal applications. Nanoscale 6, 3037–3045 (2014)CrossRefGoogle Scholar
  8. 8.
    Ma, L., Dong, X., Chen, M., Zhu, L., Wang, C., Yang, F., Dong, Y.: Fabrication and water treatment applications of carbon nanotubes (CNTs)-based composite membranes: a review. Membranes 7, 16 (2017)CrossRefGoogle Scholar
  9. 9.
    Ren, X., Chen, C., Nagatsu, M., Wang, X.: Carbon nanotubes as adsorbents in environmental pollution management: a review. Chem. Eng. J. 170, 395–410 (2011)CrossRefGoogle Scholar
  10. 10.
    Gohardani, O., Elola, M.C., Elizetxea, C.: Potential and prospective implementation of carbon nanotubes on next generation aircraft and space vehicles: a review of current and expected applications in aerospace sciences. Prog. Aerosp. Sci. 70, 42–68 (2014)CrossRefGoogle Scholar
  11. 11.
    Khare, R., Bose, S.: Carbon nanotube based composites—a review. J. Miner. Mater. Charact. Eng. 4, 31–46 (2005)Google Scholar
  12. 12.
    Ng, K.W., Lam, W.H., Pichiah, S.: A review on potential applications of carbon nanotubes in marine current turbines. Renew. Sustain. Energy Rev. 28, 331–339 (2013)CrossRefGoogle Scholar
  13. 13.
    Tan, J.M., Arulselvan, P., Fakurazi, S., Ithnin, H., Hussein, M.Z.: A review on characterization and biocompatibility of functionalized carbon nanotubes in drug delivery design. J. Nanomater. 2014, 917024 (2014)Google Scholar
  14. 14.
    Alothman, Z.A., Wabaidur, S.M.: Application of carbon nanotubes in extraction and chromatographic analysis: a review. Arabian J. Chem. (2018)  https://doi.org/10.1016/j.arabjc.2018.05.012
  15. 15.
    Bianco, A., Kostarelos, K., Prato, M.: Applications of carbon nanotubes in drug delivery. Curr. Opin. Chem. Biol. 9, 674–679 (2005)CrossRefGoogle Scholar
  16. 16.
    Casas, C.D.L., Li, W.: A review of application of carbon nanotubes for lithium ion battery anode material. J. Power Sour. 208, 74–85 (2012)CrossRefGoogle Scholar
  17. 17.
    Datsyuk, V., Kalyva, M., Papagelis, K., Parthenios, J., Tasis, D., Siokou, A., Kallitsis, I., Galiotis, C.: Chemical oxidation of multiwalled carbon nanotubes. Carbon 46, 833–840 (2008)CrossRefGoogle Scholar
  18. 18.
    Jakubus, A., Paszkiewicz, M., Stepnowski, P.: Carbon nanotubes application in the extraction techniques of pesticides: a review. Crit. Rev. Anal. Chem. 47, 76–91 (2017)CrossRefGoogle Scholar
  19. 19.
    Luo, C., Xie, L., Wang, Q., Luo, G., Liu, C.: A review of the application and performance of carbon nanotubes in fuel cells. J. Nanomater. 2015, 560392 (2015)Google Scholar
  20. 20.
    Ong, Y.T., Ahmad, A.L., Zein, S.H.S., Tan, S.H.: A review on carbon nanotubes in an environmental protection and green engineering perspective. Braz. J. Chem. Eng. 27, 227–242 (2010)CrossRefGoogle Scholar
  21. 21.
    Harris, P.J.F.: Carbon Nanotube Science: Synthesis Properties and Applications. Cambridge University Press, Cambridge (2009)CrossRefGoogle Scholar
  22. 22.
    Thostenson, E.T., Ren, Z., Chou, T.W.: Advances in the science and technology of carbon nanotubes and their composites: a review. Compos. Sci. Technol. 61, 1899–1912 (2001)CrossRefGoogle Scholar
  23. 23.
    De Volder, M.F.L., Tawfick, S.H., Baughman, R.H., Hart, A.J.: Carbon nanotubes: present and future commercial applications. Science 339, 535–539 (2013)CrossRefGoogle Scholar
  24. 24.
    Eringen, A.C.: On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. J. Appl. Phys. 54, 4703–4710 (1983)CrossRefGoogle Scholar
  25. 25.
    Eringen, A.C.: Nonlocal Continuum Field Theories. Springer-Verlag, New York (2002)zbMATHGoogle Scholar
  26. 26.
    Eringen, A.C., Edelen, D.G.B.: On nonlocal elasticity. Int. J. Eng. Sci. 10, 233–248 (1972)MathSciNetzbMATHCrossRefGoogle Scholar
  27. 27.
    Reissner, E.: On a certain mixed variational theorem and a proposed application. Int. J. Numer. Methods Eng. 20, 1366–1368 (1984)zbMATHCrossRefGoogle Scholar
  28. 28.
    Reissner, E.: On a mixed variational theorem and on a shear deformable plate theory. Int. J. Numer. Methods Eng. 23, 193–198 (1986)zbMATHCrossRefGoogle Scholar
  29. 29.
    Wang, Q., Wang, C.: The constitutive relation and small scale parameter of nonlocal continuum mechanics for modelling carbon nanotubes. Nanotechnology 18, 075702 (2007)CrossRefGoogle Scholar
  30. 30.
    He, A.Q., Kitipornchai, S., Wang, C.M., Liew, K.M.: Modeling of van der Waals force for infinitesimal deformation of multi-walled carbon nanotubes treated as cylindrical shells. Int. J. Solids Struct. 42, 6032–6047 (2005)zbMATHCrossRefGoogle Scholar
  31. 31.
    He, X.Q., Kitipornchai, S., Liew, K.M.: Buckling analysis of multi-walled carbon nanotubes: a continuum model accounting for van der Waals interaction. J. Mech. Phys. Solids 53, 303–326 (2005)zbMATHCrossRefGoogle Scholar
  32. 32.
    Ru, C.Q.: Effect of van der Waals forces on axial buckling of a double-walled carbon nanotube. J. Appl. Phys. 87, 7227–7231 (2000)CrossRefGoogle Scholar
  33. 33.
    Ru, C.Q.: Elastic models for carbon nanotubes. Encycl. Nanosci. Nanotech. 2, 731–744 (2004)Google Scholar
  34. 34.
    Wu, C.P., Hong, Z.L., Wang, Y.M.: Geometrically nonlinear static analysis of an embedded multi-walled carbon nanotube and the van der Waals interaction. J. Nanomech. Micromech. 7, 04017012 (2017)CrossRefGoogle Scholar
  35. 35.
    Wu, C.P., Lin, C.H., Wang, Y.M.: Nonlinear finite element analysis of a multi-walled carbon nanotube resting on a Pasternak foundation. Mech. Adv. Mater. Struct. (2018).  https://doi.org/10.1080/15376494.2018.1444222 CrossRefGoogle Scholar
  36. 36.
    Wu, C.P., Chen, Y.H., Hong, Z.L., Lin, C.H.: Nonlinear vibration analysis of an embedded multi-walled carbon nanotube. Adv. Nano Res. 6, 163–182 (2018)CrossRefGoogle Scholar
  37. 37.
    Strozzi, M., Pellicano, F.: Linear vibrations of triple-walled carbon nanotubes. Math. Mech. Solids 23, 1456–1481 (2018)MathSciNetCrossRefGoogle Scholar
  38. 38.
    Natsuki, T., Ni, Q.Q., Endo, M.: Analysis of the vibration characteristics of double-walled carbon nanotubes. Carbon 46, 1570–1573 (2008)CrossRefGoogle Scholar
  39. 39.
    Kumar, B.R.: Investigation on mechanical vibration of double-walled carbon nanotubes with inter-tube van der Walls forces. Adv. Nano Res. 6, 135–145 (2018)Google Scholar
  40. 40.
    Pentaras, D., Elishakoff, I.: Effective approximations for natural frequencies of double-walled carbon nanotubes based on Donnell shell theory. J. Nanotechnol. Eng. Med. 2, 021023 (2011)Google Scholar
  41. 41.
    Reddy, J.N.: Nonlocal theories for bending, buckling and vibration of beams. Int. J. Eng. Sci. 45, 288–307 (2007)zbMATHCrossRefGoogle Scholar
  42. 42.
    Reddy, J.N., Pang, S.D.: Nonlocal continuum theories of beams for the analysis of carbon nanotubes. J. Appl. Phys. 103, 023511 (2008)CrossRefGoogle Scholar
  43. 43.
    Thai, H.T.: A nonlocal beam theory for bending, buckling, and vibration of nanobeams. Int. J. Eng. Sci. 52, 56–64 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  44. 44.
    Thai, H.T., Vo, T.P.: A nonlocal sinusoidal shear deformation beam theory with application to bending, buckling, and vibration of nanobeams. Int. J. Eng. Sci. 54, 58–66 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  45. 45.
    Aissani, K., Bouiadjra, M.B., Ahouel, M., Tounsi, A.: A new nonlocal hyperbolic shear deformation theory for nanobeams embedded in an elastic medium. Struct. Eng. Mech. 55, 743–763 (2015)CrossRefGoogle Scholar
  46. 46.
    Aydogdu, M.: A general nonlocal beam theory: its application to nanobeam bending, buckling and vibration. Physica E 41, 1651–1655 (2009)CrossRefGoogle Scholar
  47. 47.
    Zhang, Y.Y., Wang, C.M., Challamel, N.: Bending, buckling, and vibration of micro/nanobeams by hybrid nonlocal beam model. J. Eng. Mech. 136, 562–574 (2010)CrossRefGoogle Scholar
  48. 48.
    Ansari, R., Sahmani, S.: Small scale effect on vibrational response of single-walled carbon nanotubes with different boundary conditions based on nonlocal beam models. Commun. Nonlinear Sci. Numer. Simult. 17, 1965–1979 (2012)MathSciNetCrossRefGoogle Scholar
  49. 49.
    Kiani, K., Mehri, B.: Assessment of nanotube structures under a moving nanoparticle using nonlocal beam theories. J. Sound Vib. 329, 2241–2264 (2010)CrossRefGoogle Scholar
  50. 50.
    Mehdipour, I., Soltani, P., Ganji, D.D.: Nonlinear vibration and bending instability of a single-walled carbon nanotube using nonlocal elastic beam theory. Int. J. Nanosci. 10, 447–453 (2011)CrossRefGoogle Scholar
  51. 51.
    Setoodeh, A.R., Khosrownejad, M., Malekzadeh, P.: Exact nonlocal solution for postbuckling of single-walled carbon nanotubes. Physica E 43, 1730–1737 (2011)CrossRefGoogle Scholar
  52. 52.
    Shen, H.S., Zhang, C.L.: Nonlocal beam model for nonlinear analysis of carbon nanotubes on elastomeric substrates. Comput. Mater. Sci. 50, 1022–1029 (2011)CrossRefGoogle Scholar
  53. 53.
    Simsek, M.: Vibration analysis of a single-walled carbon nanotube under action of a moving harmonic load based on nonlocal elasticity theory. Physica E 43, 182–191 (2010)CrossRefGoogle Scholar
  54. 54.
    Ansari, R., Gholami, R., Darabi, M.A.: Thermal buckling analysis of embedded single-walled carbon nanotubes with arbitrary boundary conditions using the nonlocal Timoshenko beam theory. J. Therm. Stress. 4, 1271–1281 (2011)CrossRefGoogle Scholar
  55. 55.
    Benzair, A., Tounsi, A., Besseghier, A., Heireche, H., Moulay, N., Boumia, L.: The thermal effect on vibration of single-walled carbon nanotubes using nonlocal Timoshenko beam theory. J. Phys. D: Appl. Phys. 41, 225404 (2008)CrossRefGoogle Scholar
  56. 56.
    Boumia, L., Zidour, M., Benzair, A., Tounsi, A.: A Timoshenko beam model for vibration analysis of chiral single-walled carbon nanotubes. Physica E 59, 186–191 (2014)CrossRefGoogle Scholar
  57. 57.
    Hosseini-Hashemi, S., Nazemnezhad, R., Bedroud, M.: Surface effects on nonlinear free vibration of functionally graded nanobeams using nonlocal elasticity. Appl. Math. Modell. 38, 3538–3553 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  58. 58.
    Lee, H.L., Chang, W.J.: Surface effects on frequency analysis of nanotubes using nonlocal Timoshenko beam theory. J. Appl. Phys. 108, 093503 (2010)CrossRefGoogle Scholar
  59. 59.
    Murmu, T., Pradhan, S.C.: Buckling analysis of a single-walled carbon nanotube embedded in an elastic medium based on nonlocal elasticity and Timoshenko beam theory and using DQM. Physica E 41, 1232–1239 (2009)CrossRefGoogle Scholar
  60. 60.
    Wang, C.M., Zhang, Y.Y., Ramesh, S.S., Kitipornchai, S.: Buckling analysis of micro- and nano-rods/tubes based on nonlocal Timoshenko beam theory. J. Phys. D: Appl. Phys. 39, 3904–3909 (2006)CrossRefGoogle Scholar
  61. 61.
    Wu, C.P., Lai, W.W.: Free vibration of an embedded single-walled carbon nanotube with various boundary conditions using the RMVT-based nonlocal Timoshenko beam theory and DQ method. Physica E 68, 8–21 (2015)CrossRefGoogle Scholar
  62. 62.
    Wu, C.P., Lai, W.W.: Reissner’s mixed variational theorem-based nonlocal Timoshenko beam theory for a single-walled carbon nanotube embedded in an elastic medium and with various boundary conditions. Compos. Struct. 122, 390–404 (2015)CrossRefGoogle Scholar
  63. 63.
    Wu, C.P., Liou, J.Y.: RMVT-based nonlocal Timoshenko beam theory for stability analysis of embedded single-walled carbon nanotubes with various boundary conditions. Int. J. Struct. Stab. Dyn. 16, 1550068 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
  64. 64.
    Yang, Y., Lim, C.W.: A variational principle approach for buckling of carbon nanotubes based on nonlocal Timoshenko beam models. Nano: Brief Rep. Rev. 6, 363–377 (2011)CrossRefGoogle Scholar
  65. 65.
    Yang, J., Ke, L.L., Kitipornchai, S.: Nonlinear free vibration of single-walled carbon nanotubes using nonlocal Timoshenko beam theory. Physica E 42, 1727–1735 (2010)CrossRefGoogle Scholar
  66. 66.
    Zidour, M., Benrahou, K.H., Semmah, A., Naceri, M., Belhadj, H.A., Bakhti, K., Tounsi, A.: The thermal effect on vibration of zigzag single walled carbon nanotubes using nonlocal Timoshenko beam theory. Comput. Mater. Sci. 51, 252–260 (2012)CrossRefGoogle Scholar
  67. 67.
    Arash, B., Wang, Q.: A review on the application of nonlocal elastic models in modeling of carbon nanotubes and graphenes. Comput. Mater. Sci. 51, 303–313 (2012)CrossRefGoogle Scholar
  68. 68.
    Behera, L., Chakraverty, S.: Recent researches on nonlocal elasticity theory in the vibration of carbon nanotubes using beam models: a review. Arch. Comput. Methods Eng. 24, 481–494 (2017)MathSciNetzbMATHCrossRefGoogle Scholar
  69. 69.
    Ebrahimi, F., Salari, E.: Thermo-mechanical vibration analysis of a single-walled carbon nanotube embedded in an elastic medium based on higher-order shear deformation beam theory. J. Mech. Sci. Technol. 29, 3797–3803 (2015)CrossRefGoogle Scholar
  70. 70.
    Maachou, M., Zidour, M., Baghdadi, H., Ziane, N., Tounsi, A.: A nonlocal Levinson beam model for free vibration analysis of zigzag single-walled carbon nanotubes including thermal effects. Solid State Commun. 151, 1467–1471 (2011)CrossRefGoogle Scholar
  71. 71.
    Rafiee, R., Moghadam, R.M.: On the modeling of carbon nanotubes: a critical review. Compos. Part B 56, 435–449 (2014)CrossRefGoogle Scholar
  72. 72.
    Adali, S.: Variational principles for transversely vibrating multiwalled carbon nanotubes based on nonlocal Euler–Bernoulli beam model. Nano Lett. 9, 1737–1741 (2009)CrossRefGoogle Scholar
  73. 73.
    Ansari, R., Ramezannezhad, H., Gholami, R.: Nonlocal beam theory for nonlinear vibrations of embedded multiwalled carbon nanotubes in thermal environment. Nonlinear Dyn. 67, 2241–2254 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  74. 74.
    Arani, A.G., Rabbani, H., Amir, S., Maraghi, Z.K., Mohammadimehr, M., Haghparast, E.: Analysis of nonlinear vibrations for multi-walled carbon nanotubes embedded in an elastic medium. J. Solid Mech. 3, 258–270 (2011)Google Scholar
  75. 75.
    Chen, X., Fang, C.Q., Wang, X.: The influence of surface effect on vibration behaviors of carbon nanotubes under initial stress. Physica E 85, 47–55 (2017)CrossRefGoogle Scholar
  76. 76.
    Civalek, O., Demir, C.: Bending analysis of microtubules using nonlocal Euler–Bernoulli beam theory. Appl. Math. Modell. 35, 2053–2067 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  77. 77.
    Ehteshami, H., Hajabasi, M.A.: Analytical approaches for vibration analysis of multi-walled carbon nanotubes modeled as multiple nonlocal Euler beams. Physica E 44, 270–285 (2011)CrossRefGoogle Scholar
  78. 78.
    Fang, B., Zhen, Y.X., Zhang, C.P., Tang, Y.: Nonlinear vibration analysis of double-walled carbon nanotubes based on nonlocal elasticity theory. Appl. Math. Modell. 37, 1096–1107 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  79. 79.
    Khosrozadeh, A., Hajabasi, M.A.: Free vibration of embedded double-walled carbon nanotubes considering nonlinear interlayer van der Waals forces. Appl. Math. Modell. 36, 997–1007 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  80. 80.
    Lu, P., Lee, H.P., Lu, C., Zhang, P.Q.: Application of nonlocal beam models for carbon nanotubes. Int. J. Solids Struct. 44, 5289–5300 (2007)zbMATHCrossRefGoogle Scholar
  81. 81.
    Mohammadimehr, M., Saidi, A.R., Arani, A.G., Arefmanesh, A., Han, Q.: Torsional buckling of a DWCNT embedded on Winkler and Pasternak foundations using nonlocal theory. J. Mech. Sci. Technol. 24, 1289–1299 (2010)CrossRefGoogle Scholar
  82. 82.
    Shakouri, A., Lin, R.M., Ng, T.Y.: Free flexural vibration studies of double-walled carbon nanotubes with different boundary conditions and modeled as nonlocal Euler beams via the Galerkin method. J. Appl. Phys. 106, 094307 (2009)CrossRefGoogle Scholar
  83. 83.
    Wang, B., Deng, Z., Zhang, K., Zhou, J.: Dynamic analysis of embedded curved double-walled carbon nanotubes based on nonlocal Euler–Bernoulli beam theory. Multidisc. Model Mater. Struct. 8, 432–453 (2012)CrossRefGoogle Scholar
  84. 84.
    Yan, Y., Wang, W., Zhang, L.: Applied multiscale method to analysis of nonlinear vibration for double-walled carbon nanotubes. Appl. Math. Modell. 35, 2279–2289 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  85. 85.
    Yoon, J., Ru, C.Q., Mioduchowski, A.: Noncoaxial resonance of an isolated multiwall carbon nanotube. Phys. Rev. B 66, 233402 (2002)CrossRefGoogle Scholar
  86. 86.
    Yoon, J., Ru, C.Q., Mioduchowski, A.: Vibration of an embedded multiwalled carbon nanotube. Compos. Sci. Technol. 63, 1533–1542 (2003)CrossRefGoogle Scholar
  87. 87.
    Ansari, R., Gholami, R., Darabi, M.A.: Nonlinear free vibration of embedded double-walled carbon nanotubes with layerwise boundary conditions. Acta Mech. 223, 2523–2536 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  88. 88.
    Ansari, R., Gholami, R., Sahmani, S., Norouzzadeh, A., Bazdid-Vahdati, M.: Dynamic stability analysis of embedded multi-walled carbon nanotubes in thermal environment. Acta Mech. Solida Sinica 28, 659–667 (2015)CrossRefGoogle Scholar
  89. 89.
    Ansari, R., Ramezannezhad, H.: Nonlocal Timoshenko beam model for the large-amplitude vibrations of embedded multiwalled carbon nanotubes including thermal effects. Physica E 43, 1171–1178 (2011)CrossRefGoogle Scholar
  90. 90.
    Benguediab, S., Tounsi, A., Zidour, M., Semmah, A.: Chirality and scale effects on mechanical buckling properties of zigzag double-walled carbon nanotubes. Compos. Part B 57, 21–24 (2014)CrossRefGoogle Scholar
  91. 91.
    Ece, M.C., Aydogdu, M.: Nonlocal elasticity effect on vibration of in-plane loaded double-walled carbon nano-tubes. Acta Mech. 190, 185–195 (2007)zbMATHCrossRefGoogle Scholar
  92. 92.
    Ke, L.L., Xiang, Y., Yang, J., Kitipornchai, S.: Nonlinear free vibration of embedded double-walled carbon nanotubes based on nonlocal Timoshenko beam theory. Comput. Mater. Sci. 47, 409–417 (2009)CrossRefGoogle Scholar
  93. 93.
    Kucuk, I., Sadek, I.S., Adali, S.: Variational principles for multiwalled carbon nanotubes undergoing vibrations based on nonlocal Timoshenko beam theory. J. Nanomater. 2010, 461252 (2010)CrossRefGoogle Scholar
  94. 94.
    Soltani, P., Bahar, P., Farshidianfar, A.: An efficient GDQ model for vibration analysis of a multiwall carbon nanotube on Pasternak foundation with general boundary conditions. Proc. IMechE Part C: J. Mech. Eng. Sci. 225, 1730–1741 (2011)CrossRefGoogle Scholar
  95. 95.
    Wang, C.M., Tan, V.B.C., Zhang, Y.Y.: Timoshenko beam model for vibration analysis of multi-walled carbon nanotubes. J. Sound Vib. 294, 1060–1072 (2006)CrossRefGoogle Scholar
  96. 96.
    Aydogdu, M.: Effects of shear deformation on vibration of doublewalled carbon nanotubes embedded in an elastic medium. Arch. Appl. Mech. 78, 711–723 (2008)zbMATHCrossRefGoogle Scholar
  97. 97.
    Barretta, R., Sciarra, F.M.: Analogies between nonlocal and local Bernoulli–Euler nanobeams. Arch. Appl. Mech. 85, 89–99 (2015)zbMATHCrossRefGoogle Scholar
  98. 98.
    Barretta, R., Canadija, M., Sciarra, F.M.: A higher-order Eringen model for Bernoulli–Euler nanobeams. Arch. Appl. Mech. 86, 483–495 (2016)zbMATHCrossRefGoogle Scholar
  99. 99.
    Behera, L., Chakraverty, S.: Application of differential quadrature method in free vibration analysis of nanobeams based on various nonlocal theories. Comput. Math. Appl. 69, 1444–1462 (2015)MathSciNetCrossRefGoogle Scholar
  100. 100.
    Eltaher, M.A., Khairy, A., Sadoun, A.M., Omer, E.I.: Coupling effects of nonlocal and surface energy on vibration analysis of nanobeams. Appl. Math. Comput. 224, 760–774 (2013)MathSciNetGoogle Scholar
  101. 101.
    Eltaher, M.A., Khater, M.E., Emam, S.A.: A review on nonlocal elastic models for bending, buckling, vibrations, and wave propagation of nanoscale beams. Appl. Math. Modell. 40, 4109–4128 (2016)MathSciNetCrossRefGoogle Scholar
  102. 102.
    Gheshlaghi, B., Hasheminejad, S.M.: Surface effects on nonlinear free vibration of nanobeams. Compos. Part B 42, 934–937 (2011)CrossRefGoogle Scholar
  103. 103.
    Janghorban, M.: Two different types of differential quadrature methods for static analysis of microbeams based on nonlocal thermal elasticity theory in thermal environment. Arch. Appl. Mech. 82, 669–675 (2012)zbMATHCrossRefGoogle Scholar
  104. 104.
    Reddy, J.N.: Nonlocal nonlinear formulations for bending of classical and shear deformation theories of beams and plates. Int. J. Eng. Sci. 48, 1507–1518 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  105. 105.
    Sahmani, S., Ansari, R.: Nonlocal beam models for buckling of nanobeams using state-space method regarding different boundary conditions. J. Mech. Sci. Technol. 25, 2365–2375 (2011)CrossRefGoogle Scholar
  106. 106.
    Togun, N., Bagdatli, S.M.: Nonlinear vibration of a nanobeam on a Pasternak elastic foundation based on non-local Euler–Bernoulli beam theory. Math. Comput. Appl. 21, 3 (2016)MathSciNetGoogle Scholar
  107. 107.
    Wang, Y.Z., Li, F.M.: Nonlinear primary resonance of nano beam with axial initial load by nonlocal continuum theory. Int. J. Non-Linear Mech. 61, 74–79 (2014)CrossRefGoogle Scholar
  108. 108.
    Ebrahimi, F., Nasirzadeh, P.: A nonlocal Timoshenko beam theory for vibration analysis of thick nanobeams using differential transform method. J. Theoret. Appl. Mech. 53, 1041–1052 (2015)CrossRefGoogle Scholar
  109. 109.
    Wang, C.M., Kitipornchai, S., Lim, C.W., Eisenberger, M.: Beam bending solutions based on nonlocal Timoshenko beam theory. J. Eng. Mech. 134, 475–481 (2008)CrossRefGoogle Scholar
  110. 110.
    Yang, Q., Lim, C.W., Xiang, Y.: Nonlinear thermal bending for shear deformable nanobeams based on nonlocal elasticity theory. Int. J. Aerosp. Lightweight Struct. 1, 89–107 (2011)CrossRefGoogle Scholar
  111. 111.
    Karlicic, D., Kozic, P., Pavlovic, R.: Nonlocal vibration and stability of a multiple-nanobeam system coupled by the Winkler elastic medium. Appl. Math. Modell. 40, 1599–1614 (2016)MathSciNetCrossRefGoogle Scholar
  112. 112.
    Khaniki, H.B.: On vibrations of nanobeam systems. Int. J. Eng. Sci. 124, 85–103 (2018)MathSciNetzbMATHCrossRefGoogle Scholar
  113. 113.
    Murmu, T., Adhikari, S.: Axial instability of double-nanobeam-systems. Phys. Lett. A 375, 601–608 (2011)CrossRefGoogle Scholar
  114. 114.
    Murmu, T., Adhikari, S.: Nonlocal elasticity based vibration of initially pre-stressed coupled nanobeam systems. Eur. J. Mech. A/Solids 34, 52–62 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  115. 115.
    Zhou, Z., Li, Y., Fan, J., Rong, D., Sui, G., Xu, G.: Exact vibration analysis of a double-nanobeam-systems embedded in an elastic medium by a Hamiltonian-based method. Physica E 99, 220–235 (2018)CrossRefGoogle Scholar
  116. 116.
    Lei, X.W., Natsuki, T., Shi, J.X., Ni, Q.Q.: Surface effects on the vibrational frequency of double-walled carbon nanotubes using the nonlocal Timoshenko beam model. Compos. Part B 43, 64–69 (2012)CrossRefGoogle Scholar
  117. 117.
    Murmu, T., Adhikari, S.: Nonlocal transverse vibration of double-nanobeam-systems. J. Appl. Phys. 108, 083514 (2010)CrossRefGoogle Scholar
  118. 118.
    Ebrahimi, F., Salari, E.: Nonlocal thermos-mechanical vibration analysis of functionally graded nanobeams in thermal environment. Acta Astronaut. 113, 29–50 (2015)CrossRefGoogle Scholar
  119. 119.
    Ebrahimi, F., Barati, M.R.: Small-scale effects on hygro-thermo-mechanical vibration of temperature-dependent nonhomogeneous nanoscale beams. Mech. Adv. Mater. Struct. 24, 924–936 (2017)CrossRefGoogle Scholar
  120. 120.
    Ebrahimi, F., Ghadiri, M., Salari, E., Hosein-Hoseini, S.A., Shaghaghi, G.R.: Application of the differential transformation method for nonlocal vibration analysis of functionally graded nanobeams. J. Mech. Sci. Technol. 29, 1207–1215 (2015)CrossRefGoogle Scholar
  121. 121.
    Ebrahimi, F., Salari, E.: Thermal buckling and free vibration analysis of size dependent Timoshenko FG nanobeams in thermal environments. Compos. Struct. 128, 363–380 (2015)CrossRefGoogle Scholar
  122. 122.
    Ebrahimi, F., Salari, E.: Size-dependent free flexural vibrational behavior of functionally graded nanobeams using semi-analytical differential transform method. Compos. Part B 79, 156–169 (2015)CrossRefGoogle Scholar
  123. 123.
    Ebrahimi, F., Salari, E.: Effect of various thermal loadings on buckling and vibrational characteristics of nonlocal temperature-dependent functionally graded nanobeams. Mech. Adv. Mater. Struct. 23, 1379–1397 (2016)CrossRefGoogle Scholar
  124. 124.
    Ebrahimi, F., Salari, E., Hosseini, S.A.H.: Thermomechanical vibration behavior of FG nanobeams subjected to linear and nonlinear temperature distributions. J. Therm. Stress. 38, 1360–1386 (2015)CrossRefGoogle Scholar
  125. 125.
    El-Borgi, S., Fernandes, R., Reddy, J.N.: Non-local free and forced vibrations of graded nanobeams resting on a non-linear elastic foundation. Int. J. Non-linear Mech. 77, 348–363 (2015)CrossRefGoogle Scholar
  126. 126.
    Eptaimeros, K.G., Koutsoumaris, C.C., Tsamasphyros, G.J.: Nonlocal integral approach to the dynamical response of nanobeams. Int. J. Mech. Sci. 115–116, 68–80 (2016)CrossRefGoogle Scholar
  127. 127.
    Li, L., Hu, Y.: Nonlinear bending and free vibration analyses of nonlocal strain gradient beams made of functionally graded material. Int. J. Eng. Sci. 107, 77–97 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
  128. 128.
    Niknam, H., Aghdam, M.M.: A semi analytical approach for large amplitude free vibration and buckling of nonlocal FG beams resting on elastic foundation. Compos. Struct. 119, 452–462 (2015)CrossRefGoogle Scholar
  129. 129.
    Ebrahimi, F., Barati, M.R.: A nonlocal higher-order shear deformation beam theory for vibration analysis of size-dependent functionally graded nanobeams. Arab. J. Sci. Eng. 41, 1679–1690 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
  130. 130.
    Ebrahimi, F., Barati, M.R.: Buckling analysis of smart size-dependent higher order magneto-electro-thermo-elastic functionally graded nanosize beams. J. Mech. 33, 23–33 (2017)CrossRefGoogle Scholar
  131. 131.
    Ebrahimi, F., Salari, E.: Thermo-mechanical vibration analysis of nonlocal temperature-dependent FG nanobeams with various boundary conditions. Compos. Part B-Eng. 78, 272–290 (2015)CrossRefGoogle Scholar
  132. 132.
    Ebrahimi, F., Shafiei, N.: Application of Eringen’s nonlocal elasticity theory for vibration analysis of rotating functionally graded nanobeams. Smart Struct. Syst. 17, 837–857 (2016)CrossRefGoogle Scholar
  133. 133.
    Eltaher, M.A., Khairy, A., Sadoun, A.M., Omer, F.A.: Static and buckling analysis of functionally graded Timoshenko nanobeams. Appl. Math. Comput. 229, 283–295 (2014)MathSciNetzbMATHGoogle Scholar
  134. 134.
    Rahmani, O., Pedram, O.: Analysis and modeling the size effect on vibration of functionally graded nanobeams based on nonlocal Timoshenko beam theory. Int. J. Eng. Sci. 77, 55–70 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  135. 135.
    Li, L., Li, X., Hu, Y.: Free vibration analysis of nonlocal strain gradient beams made of functionally graded material. Int. J. Eng. Sci. 102, 77–92 (2016)zbMATHCrossRefGoogle Scholar
  136. 136.
    Ebrahimi, F., Barati, M.R.: Vibration analysis of embedded size dependent FG nanobeams based on third-order shear deformation beam theory. Struct. Eng. Mech. 61, 721–736 (2017)CrossRefGoogle Scholar
  137. 137.
    Eltaher, M.A., Emam, S.A., Mahmoud, F.F.: Static and stability analysis of nonlocal functionally graded nanobeams. Compos. Struct. 96, 82–88 (2013)CrossRefGoogle Scholar
  138. 138.
    Eltaher, M.A., Alshorbagy, A.E., Mahmoud, F.F.: Vibration analysis of Euler–Bernoulli nanobeams by using finite element method. Appl. Math. Modell. 37, 4787–4797 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  139. 139.
    Nguyen, N.T., Kim, N.I., Lee, J.: Mixed finite element analysis of nonlocal Euler–Bernoulli nanobeams. Finites Elem. Anal. Des. 106, 65–72 (2015)CrossRefGoogle Scholar
  140. 140.
    Pradhan, S.C.: Nonlocal finite element analysis and small scale effects of CNTs with Timoshenko beam theory. Finites Elem. Anal. Des. 50, 8–20 (2012)CrossRefGoogle Scholar
  141. 141.
    Pradhan, S.C., Mandal, U.: Finite element analysis of CNT’s based on nonlocal elasticity and Timoshenko beam theory including thermal effect. Physica E 53, 223–232 (2013)CrossRefGoogle Scholar
  142. 142.
    Merzouki, T., Ganapathi, M., Polit, O.: A nonlocal higher-order curved beam finite model including thickness stretching effect for bending analysis of curved nanobeams. Mech. Adv. Mater. Struct. (2017).  https://doi.org/10.1080/15376494.2017.1410903 CrossRefGoogle Scholar
  143. 143.
    Polit, O., Merzouki, T., Ganapathi, M.: Elastic stability of curved nanobeam based on higher-order shear deformation theory and nonlocal analysis by finite element approach. Finites Elem. Anal. Des. 146, 1–15 (2018)MathSciNetCrossRefGoogle Scholar
  144. 144.
    Reddy, J.N., El-Borgi, S.: Eringen’s nonlocal theories of beams accounting for moderate rotations. Int. J. Eng. Sci. 82, 159–177 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  145. 145.
    Reddy, J.N., El-Borgi, S., Romanoff, J.: Nonlinear analysis of functionally graded microbeams using Eringen’s nonlocal differential model. Int. J. Nonlinear Mech. 67, 308–318 (2014)CrossRefGoogle Scholar
  146. 146.
    Kuo, Y.L.: Nonlinear finite element analysis of nonlocal elastic nanobeams with large-amplitude vibrations. J. Comput. Theor. Nanosci. 10, 488–495 (2013)CrossRefGoogle Scholar
  147. 147.
    Nguyen, N.T., Kim, N.I., Lee, J.: Static behavior of nonlocal Euler–Bernoulli beam model embedded in an elastic medium using mixed finite element formulation. Struct. Eng. Mech. 63, 137–146 (2017)Google Scholar
  148. 148.
    Ribeiro, P., Thomas, O.: Nonlinear modes of vibration and internal resonances in nonlocal beams. J. Comput. Nonlinear Dyn. 12, 031017 (2017)CrossRefGoogle Scholar
  149. 149.
    Ansari, R., Rajabiehfard, R., Arash, B.: Thermal buckling of multiwalled carbon nanotubes using a semi-analytical finite element approach. J. Therm. Stress. 34, 817–834 (2011)CrossRefGoogle Scholar
  150. 150.
    Alshorbagy, A.E., Eltaher, M.A., Mahmoud, F.F.: Static analysis of nanobeams using nonlocal FEM. J. Mech. Sci. Technol. 27, 2035–2041 (2013)CrossRefGoogle Scholar
  151. 151.
    Demir, C., Civalek, O.: A new nonlocal FEM via Hermitian cubic shape functions for thermal vibration of nano beams surrounded by an elastic matrix. Compos. Struct. 168, 872–884 (2017)CrossRefGoogle Scholar
  152. 152.
    Eltaher, M.A., Hamed, M.A., Sadoun, A.M., Mansour, A.: Mechanical analysis of higher order gradient nanobeams. Appl. Math. Comput. 229, 260–272 (2014)MathSciNetzbMATHGoogle Scholar
  153. 153.
    Lignola, G.P., Spena, F.R., Prota, A., Manfredi, G.: Exact stiffness-matrix of two nodes Timoshenko beam on elastic medium: an analogy with Eringen model of nonlocal Euler–Bernoulli nanobeams. Comput. Struct. (2017).  https://doi.org/10.1016/j.compstruc.2016.12.003 CrossRefGoogle Scholar
  154. 154.
    Mahmoud, F.F., Eltaher, M.A., Alshorbagy, A.E., Meletis, E.I.: Static analysis of nanobeams including surface effects by nonlocal finite element. J. Mech. Sci. Technol. 26, 3555–3563 (2012)CrossRefGoogle Scholar
  155. 155.
    Phadikar, J.K., Pradhan, S.C.: Variational formulation and finite element analysis for nonlocal elastic nanobeams and nanoplates. Comput. Mater. Sci. 49, 492–499 (2010)CrossRefGoogle Scholar
  156. 156.
    Sciarra, F.M.: Finite element modelling of nonlocal beams. Physica E 59, 144–149 (2014)CrossRefGoogle Scholar
  157. 157.
    Alotta, G., Failla, G., Zingales, M.: Finite element method for a nonlocal Timoshenko beam model. Fin. Elem. Anal. Des. 89, 77–92 (2014)CrossRefGoogle Scholar
  158. 158.
    Preethi, K., Rajagopal, A., Reddy, J.N.: Surface and nonlocal effects for nonlinear analysis of Timoshenko beams. Int. J. Nonlinear Mech. 76, 100–111 (2015)CrossRefGoogle Scholar
  159. 159.
    Gholami, R., Ansari, R.: Nonlinear resonance responses of geometrically imperfect shear deformable including surface stress effects. Int. J. Nonlinear Mech. 97, 115–125 (2017)CrossRefGoogle Scholar
  160. 160.
    Eltaher, M.A., Emam, S.A., Mahmoud, F.F.: Free vibration analysis of functionally graded size-dependent nanobeams. Appl. Math. Comput. 218, 7406–7420 (2012)MathSciNetzbMATHGoogle Scholar
  161. 161.
    Hamed, M.A., Eltaher, M.A., Sadoun, A.M., Almitani, K.H.: Free vibration of symmetric and sigmoid functionally graded nanobeams. Appl. Phys. A 122, 829–839 (2016)CrossRefGoogle Scholar
  162. 162.
    Eltaher, M.A., Mahmoud, F.F., Assie, A.E., Meletis, F.A.: Static and buckling analysis of functionally graded Timoshenko nanobeams. Appl. Math. Comput. 229, 283–295 (2014)MathSciNetGoogle Scholar
  163. 163.
    Carrera, E.: An assessment of mixed and classical theories on global and local response of multilayered orthotropic plates. Compos. Struct. 50, 183–198 (2000)CrossRefGoogle Scholar
  164. 164.
    Carrera, E.: An assessment of mixed and classical theories for the thermal stress analysis of orthotropic multilayered plates. J. Therm. Stress. 23, 797–831 (2000)CrossRefGoogle Scholar
  165. 165.
    Carrera, E.: Historical review of zig-zag theories for multilayered plates and shells. Appl. Mech. Rev. 56, 287–308 (2003)CrossRefGoogle Scholar
  166. 166.
    Carrera, E.: Assessment of theories for free vibration analysis of homogeneous and multilayered plates. Shock Vib. 11, 261–270 (2004)CrossRefGoogle Scholar
  167. 167.
    Wu, C.P., Li, H.Y.: The RMVT- and PVD-based finite layer methods for the three-dimensional analysis of multilayered composite and FGM plates. Compos. Struct. 92, 2476–2496 (2010)CrossRefGoogle Scholar
  168. 168.
    Wu, C.P., Li, H.Y.: RMVT- and PVD-based finite layer methods for the quasi-3D free vibration analysis of multilayered composite and FGM plates. CMC Comput. Mater. Contin. 19, 155–198 (2010)Google Scholar
  169. 169.
    Wu, C.P., Chiu, K.H., Wang, Y.M.: A review on the three-dimensional analytical approaches of multilayered and functionally graded piezoelectric plates and shells. CMC Comput. Mater. Contin. 8, 93–132 (2008)Google Scholar
  170. 170.
    Brischetto, S., Carrera, E.: Refined 2D models for the analysis of functionally graded piezoelectricity plates. J. Intell. Mater. Syst. Struct. 20, 1783–1797 (2009)CrossRefGoogle Scholar
  171. 171.
    Brischetto, S., Carrera, E.: Advanced mixed theories for bending analysis of functionally graded plates. Comput. Struct. 88, 1474–1483 (2010)CrossRefGoogle Scholar
  172. 172.
    Brischetto, S., Carrera, E.: Coupled thermos-electro-mechanical analysis of smart plates embedding composite and piezoelectric layers. J. Therm. Stress. 35, 766–804 (2012)CrossRefGoogle Scholar
  173. 173.
    Wu, C.P., Li, H.Y.: RMVT-based finite cylindrical prism methods for multilayered functionally graded circular hollow cylinders with various boundary conditions. Compos. Struct. 100, 592–608 (2013)CrossRefGoogle Scholar
  174. 174.
    Wu, C.P., Liu, Y.C.: A review of semi-analytical numerical methods for laminated composite and multilayered functionally graded elastic/piezoelectric plates and shells. Compos. Struct. 147, 1–15 (2016)CrossRefGoogle Scholar
  175. 175.
    Wu, C.P., Peng, S.T., Chen, Y.C.: RMVT- and PVD-based finite cylindrical layer methods for the three-dimensional buckling analysis of multilayered FGM cylinders under axial compression. Appl. Math. Modell. 38, 233–252 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  176. 176.
    Wang, Y.M., Chen, S.M., Wu, C.P.: A meshless collocation method based on the differential reproducing kernel interpolation. Comput. Mech. 45, 585–606 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  177. 177.
    Bert, C.W., Malik, M.: Differential quadrature method in computational mechanics: a review. Appl. Mech. Rev. 49, 1–27 (1996)CrossRefGoogle Scholar
  178. 178.
    Du, H., Lim, M.K., Lin, R.M.: Application of generalized differential quadrature method to structural problems. Int. J. Numer. Methods Eng. 37, 1881–1896 (1994)MathSciNetzbMATHCrossRefGoogle Scholar
  179. 179.
    Wu, C.P., Lee, C.Y.: Differential quadrature solution for the free vibration analysis of laminated conical shells with variable stiffness. Int. J. Mech. Sci. 43, 1853–1869 (2001)zbMATHCrossRefGoogle Scholar
  180. 180.
    Cowper, G.R.: The shear coefficient in Timoshenko’s beam theory. J. Appl. Mech. 33, 335–340 (1966)zbMATHCrossRefGoogle Scholar
  181. 181.
    Chen, S.M., Wu, C.P., Wang, Y.M.: Hermite DRK interpolation-based collocation method for the analysis of Bernoulli–Euler beams and Kirchhoff–Love plates. Comput. Mech. 47, 425–453 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  182. 182.
    Reddy, J.N.: An Introduction to the Finite Element Method. McGraw-Hill, New York (1984)zbMATHGoogle Scholar
  183. 183.
    Strozzi, M., Smirnov, V.V., Manevitch, L.I., Pellicano, F.: Nonlinear vibrations and energy exchange of single-walled carbon nanotubes. Radial breathing modes. Compos. Struct. 184, 613–632 (2018)zbMATHCrossRefGoogle Scholar
  184. 184.
    Strozzi, M., Smirnov, V.V., Manevitch, L.I., Milani, M., Pellicano, F.: Nonlinear vibrations and energy exchange of single-walled carbon nanotubes. Circumferential flexural modes. J. Sound Vib. 381, 156–178 (2016)zbMATHCrossRefGoogle Scholar
  185. 185.
    Strozzi, M., Manevitch, L.I., Pellicano, F., Smirnov, V.V., Shepelev, D.S.: Low-frequency linear vibrations of single-walled carbon nanotubes: analytical and numerical models. J. Sound Vib. 333, 2936–2957 (2014)CrossRefGoogle Scholar
  186. 186.
    Hu, Y.G., Liew, K.M., Wang, Q., He, X.Q., Yakobson, B.I.: Nonlocal shell model for elastic wave propagation in single- and double-walled carbon nanotubes. J. Mech. Phys. Solids 56, 3475–3485 (2008)zbMATHCrossRefGoogle Scholar
  187. 187.
    Shen, H.S., Zhang, C.L.: Torsional buckling and postbuckling of double-walled carbon nanotubes by nonlocal shear deformable shell model. Compos. Struct. 92, 1073–1084 (2010)CrossRefGoogle Scholar
  188. 188.
    Shen, H.S., Zhang, C.L., Xiang, Y.: Nonlocal shear deformable shell model for thermal postbuckling of axially compressed double-walled carbon nanotubes. Philos. Mag. 90, 3189–3214 (2010)CrossRefGoogle Scholar
  189. 189.
    Shen, H.S., Zhang, C.L.: Nonlocal shear deformable shell model for post-buckling of axially compressed double-walled carbon nanotubes embedded in an elastic matrix. J. Appl. Mech. 77, 041006 (2010)CrossRefGoogle Scholar
  190. 190.
    Ansari, R., Rouhi, H., Sahmani, S.: Free vibration analysis of single- and double-walled carbon nanotubes based on nonlocal elastic shell models. J. Vib. Control 20, 670–678 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  191. 191.
    Ansari, R., Rouhi, H.: Analytical treatment of the free vibration of single-walled carbon nanotubes based on the nonlocal Flugge shell theory. J. Eng. Mater. Technol. 134, 011008 (2012)CrossRefGoogle Scholar
  192. 192.
    Arani, A.G., Barzoki, A.A.M., Kolahchi, R., Loghman, A.: Pasternak foundation effect on the axial and torsional waves propagation in embedded DWCNTs using nonlocal elasticity cylindrical shell theory. J. Mech. Sci. Tech. 25, 2385–2391 (2011)CrossRefGoogle Scholar
  193. 193.
    Ansari, R., Sahmani, A., Rouhi, H.: Axial buckling analysis of single-walled carbon nanotubes in thermal environments via the Rayleigh–Ritz technique. Comput. Mater. Sci. 50, 3050–3055 (2011)CrossRefGoogle Scholar
  194. 194.
    Ansari, R., Shahabodini, A., Rouhi, H.: A thickness-independent nonlocal shell model for describing the stability behavior of carbon nanotubes under compression. Compos. Struct. 100, 323–331 (2013)CrossRefGoogle Scholar
  195. 195.
    Fazelzadeh, S.A., Ghavanloo, E.: Nonlocal anisotropic elastic shell model for vibrations of single-walled carbon nanotubes with arbitrary chirality. Compos. Struct. 94, 1016–1022 (2012)CrossRefGoogle Scholar
  196. 196.
    Ghavanloo, E., Fazelzadeh, S.A.: Vibration characteristics of single-walled carbon nanotubes based on an anisotropic elastic shell model including chirality effect. Appl. Math. Modell. 36, 4988–5000 (2012)CrossRefGoogle Scholar
  197. 197.
    Ghorbanpour Arani, A., Mohammadimehr, M., Arefmanesh, A., Ghasemi, A.: Transverse vibration of short carbon nanotubes using cylindrical shell and beam models. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 224, 745–756 (2010)CrossRefGoogle Scholar
  198. 198.
    Hosseini-Ara, R., Mirdamadi, H.R., Khademyzadeh, H., Salimi, H.: Thermal effect on dynamic stability of single-walled carbon nanotubes in low and high temperatures based on nonlocal shell theory. Adv. Mater. Res. 622, 959–964 (2013)Google Scholar
  199. 199.
    Rahmanian, M., Torkaman-Asadi, M.A., Firouz-Abadi, R.D., Kouchakzadeh, M.A.: Free vibration analysis of carbon nanotubes resting on Winkler foundations based on nonlocal models. Physica B: Condens. Matter. 484, 83–94 (2016)CrossRefGoogle Scholar
  200. 200.
    Rouhi, H.: Free vibration analysis of single- and double-walled carbon nanotubes based on nonlocal elastic shell models. J. Vib. Control 20, 670–678 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  201. 201.
    Soltani, P., Saberian, J., Bahramian, R.: Nonlinear vibration analysis of single-walled carbon nanotube with shell model based on the nonlocal elasticity theory. J. Comput. Nonlinear Dyn. 11, 011002 (2016)CrossRefGoogle Scholar
  202. 202.
    Wang, Q., Varadan, V.K.: Application of nonlocal elastic shell theory in wave propagation analysis of carbon nanotubes. Smart Mater. Struct. 16, 178–190 (2007)CrossRefGoogle Scholar
  203. 203.
    Zhang, Y.Y., Wang, C.M., Duan, W.H., Zong, Z.: Assessment of continuum mechanica models in predicting buckling strains of single-walled carbon nanotubes. Nanotechnology 20, 395707 (2009)CrossRefGoogle Scholar
  204. 204.
    Ansari, R., Torabi, J., Faghih Shojaei, M.: An efficient numerical method for analyzing the thermal effects on the vibration embedded single-walled carbon nanotubes based on the nonlocal shell model. Mech. Adv. Mater. Struct. 25, 500–511 (2018)CrossRefGoogle Scholar
  205. 205.
    Brischetto, S.: A continuum elastic three-dimensional model for natural frequencies of single-walled carbon nanotubes. Compos. Part B 61, 222–228 (2014)CrossRefGoogle Scholar
  206. 206.
    Gafour, Y., Zidour, M., Tounsi, A., Heireche, H., Semmah, A.: Sound wave propagation in zigzag double-walled carbon nanotubes embedded in an elastic medium using nonlocal elasticity theory. Physica E 48, 118–123 (2013)CrossRefGoogle Scholar
  207. 207.
    Rouhi, H., Ansari, R.: Nonlocal analytical Fugge shell model for axial buckling of double-walled carbon nanotubes with different end conditions. Nano 7, 1250018 (2012)CrossRefGoogle Scholar
  208. 208.
    Ru, C.Q.: Axially compressed buckling of a doublewalled carbon nanotube embedded in an elastic medium. J. Mech. Phys. Solids 49, 1265–1279 (2001)zbMATHCrossRefGoogle Scholar
  209. 209.
    Ansari, R., Rouhi, H., Sahmani, S.: Thermal effect on axial buckling behavior of multi-walled carbon nanotubes based on nonlocal shell model. Physica E 44, 373–378 (2011)CrossRefGoogle Scholar
  210. 210.
    Ansari, R., Shahabodini, A., Rouhi, H., Alipour, A.: Thermal buckling analysis of multi-walled carbon nanotubes through a nonlocal shell theory incorporating interatomic potentials. J. Therm. Stress. 36, 56–70 (2013)CrossRefGoogle Scholar
  211. 211.
    He, X.Q., Eisenberger, M., Liew, K.M.: The effect of van der Waals interaction modeling on the vibration characteristics of multiwalled carbon nanotubes. J. Appl. Phys. 100, 124317 (2006)CrossRefGoogle Scholar
  212. 212.
    He, X.Q., Kitipornchai, S., Wang, C.M., Xiang, Y., Zhou, Q.: A nonlinear van der Waals force model for multiwalled carbon nanotubes modeled by a nested system of cylindrical shells. J. Appl. Mech. 77, 061006 (2010)CrossRefGoogle Scholar
  213. 213.
    Ru, C.Q.: Column buckling of multiwalled carbon nanotubes with interlayer radial displacements. Phys. Rev. B 62, 16962 (2000)CrossRefGoogle Scholar
  214. 214.
    Wang, C.Y., Ru, C.Q., Mioduchowski, A.: Free vibration of multiwall carbon nanotubes. J. Appl. Phys. 97, 114323 (2005)CrossRefGoogle Scholar
  215. 215.
    Yan, Y., Wang, W.Q., Zhang, L.X.: Nonlocal effect on axially compressed buckling of triple-walled carbon nanotubes under temperature field. Appl. Math. Modell. 34, 3422–3429 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  216. 216.
    Zhang, Y.Y., Wang, C.M., Duan, W.H., Xiang, Y., Zong, Z.: Assessment of continuum mechanics models in predicting buckling strains of single-walled carbon nanotubes. Nanotechnology 20, 395707 (2009)CrossRefGoogle Scholar
  217. 217.
    Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Dover, New York (1944)zbMATHGoogle Scholar
  218. 218.
    Flügge, W.: Stresses in Shells. Springer-Verlag, New York (1973)zbMATHCrossRefGoogle Scholar
  219. 219.
    Donnell, L.H.: Beams, Plates, and Shells. McGraw-Hill, New York (1976)zbMATHGoogle Scholar
  220. 220.
    Sanders, J.L.: An Improved First Approximation Theory for Thin Shells. NASA-TR-R24 (1959)Google Scholar
  221. 221.
    Soedel, W.: Vibrations of Shells and Plates. Marcel Dekker Inc, New York (1993)zbMATHGoogle Scholar
  222. 222.
    Leissa, A.W.: Vibration of Shells. NASA Report No. SP-288 (1973)Google Scholar
  223. 223.
    Soldatos, K.P.: A comparison of some shell theories used for the dynamic analysis of cross-ply laminated circular cylindrical panels. J. Sound Vib. 97, 305–319 (1984)CrossRefGoogle Scholar
  224. 224.
    Chandrashekhara, K., Kumar, D.V.T.G.P.: Assessment of shell theories for the static analysis of cross-ply laminated circular cylindrical shells. Thin-Walled Struct. 22, 291–318 (1995)CrossRefGoogle Scholar
  225. 225.
    Silvestre, N.: On the accuracy of shell models for torsional buckling of carbon nanotubes. Eur. J. Mech. A Solids 32, 103–108 (2012)zbMATHCrossRefGoogle Scholar
  226. 226.
    Silvestre, N., Wang, C.M., Zhang, Y.Y., Xiang, Y.: Sanders shell model for buckling of single-walled carbon nanotubes with small aspect ratio. Compos. Struct. 93, 1683–1692 (2011)CrossRefGoogle Scholar
  227. 227.
    Wang, C.M., Tay, Z.Y., Chowdhuary, A.N.R., Duan, W.H., Zhang, Y.Y., Silvestre, N.: Examination of cylindrical shell theories for buckling of carbon nanotubes. Int. J. Struct. Stab. Dyn. 11, 1025–1058 (2011)Google Scholar
  228. 228.
    Duan, W.H., Wang, C.M., Zhang, Y.Y.: Calibration of nonlocal scaling effect parameter for free vibration of carbon nanotubes by molecular dynamics. J. Appl. Phys. 101, 024305 (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Civil EngineeringNational Cheng Kung UniversityTainanTaiwan

Personalised recommendations