Advertisement

Analytic solution for reflection and transmission coefficients of joints in three-dimensional truss-type structural networks

  • Mohammad Tahaye AbadiEmail author
Original

Abstract

This paper presents an analytic solution method to evaluate transient response of the joints in the truss-type structural networks. The analytic method models the wave propagation along the elastic members connected to the joints and derives the functions for the reflection and transmission coefficients for the structural joints. The coefficients of wave reflection and transmission across the joints are functions of material properties and geometrical parameters of the elements connected to the joint. The present analytic solution considers the effects of abrupt change in material properties as well as the alignment of connected elements on the transmission and reflection coefficients of the joints. The analytic solution method derives the functions for the transmission and reflection coefficients at the connection point of two different coaxial elements as well as the joints in planar and space frame structures.

Keywords

Transmission Reflection Joint Analytic solution Recursive 

Notes

References

  1. 1.
    Renno, J.M., Mace, B.R.: Calculation of reflection and transmission coefficients of joints using a hybrid finite element/wave and finite element approach. J. Sound Vib. 332, 2149–2164 (2013)CrossRefGoogle Scholar
  2. 2.
    Li, Y., Zhu, Z., Li, B., Deng, J., Xie, H.: Study on the transmission and reflection of stress waves across joints. Int. J. Rock Mech. Min. Sci. 48, 364–371 (2011)CrossRefGoogle Scholar
  3. 3.
    Achenbach, J.: Wave Propagation in Elastic Solids. Elsevier, Amsterdam (2012)zbMATHGoogle Scholar
  4. 4.
    Chattopadhyay, A.: Wave reflection in triclinic crystalline medium. Arch. Appl. Mech. 76, 65–74 (2006)CrossRefzbMATHGoogle Scholar
  5. 5.
    Kumar, R., Kaur, M.: Reflection and refraction of plane waves at the interface of an elastic solid and microstretch thermoelastic solid with microtemperatures. Arch. Appl. Mech. 84, 571–590 (2014)CrossRefzbMATHGoogle Scholar
  6. 6.
    Eringen, A.C.: Continuum theory of micromorphic electromagnetic thermoelastic solids. Int. J. Eng. Sci. 41, 653–665 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Gei, M.: Elastic waves guided by a material interface. Eur. J. Mech. A Solids 27, 328–345 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Leung, A.Y.T.: Dynamic Stiffness and Substructures. Springer, Berlin (2012)Google Scholar
  9. 9.
    Jun, L., Yuchen, B., Peng, H.: A dynamic stiffness method for analysis of thermal effect on vibration and buckling of a laminated composite beam. Arch. Appl. Mech. 87, 1295–1315 (2017)CrossRefGoogle Scholar
  10. 10.
    Langley, R.S.: Application of the dynamic stiffness method to the free and forced vibrations of aircraft panels. J. Sound Vib. 135, 319–331 (1989)CrossRefGoogle Scholar
  11. 11.
    Banerjee, J.R., Sobey, A.J.: Dynamic stiffness formulation and free vibration analysis of a three-layered sandwich beam. Int. J. Solids Struct. 42, 2181–2197 (2005)CrossRefzbMATHGoogle Scholar
  12. 12.
    Doyle, J.F.: Wave Propagation in Structures: Spectral Analysis Using Fast Discrete Fourier Transformation. Springer, New York (2012)Google Scholar
  13. 13.
    Chakraborty, A., Gopalakrishnan, S.: A spectrally formulated plate element for wave propagation analysis in anisotropic material. Comput. Methods Appl. Mech. Eng. 194, 4425–4446 (2005)CrossRefzbMATHGoogle Scholar
  14. 14.
    Ajith, V., Gopalakrishnan, S.: Wave propagation in stiffened structures using spectrally formulated finite element. Eur. J. Mech. A Solids 41, 1–15 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Gopalakrishnan, S., Doyle, J.F.: Wave propagation in connected waveguides of varying cross-section. J. Sound Vib. 175, 347–363 (1994)CrossRefzbMATHGoogle Scholar
  16. 16.
    Waki, Y., Mace, B.R., Brennan, M.J.: Numerical issues concerning the wave and finite element method for free and forced vibrations of waveguides. J. Sound Vib. 327, 92–108 (2009)CrossRefGoogle Scholar
  17. 17.
    Kharrat, M., Ichchou, M.N., Bareille, O., Zhou, W.: Pipeline inspection using a torsional guided-waves inspection system. Part 2: defect sizing by the wave finite element method. Int. J. Appl. Mech. 6, 1450035 (2014)CrossRefGoogle Scholar
  18. 18.
    Hussein, M.I., Leamy, M.J., Ruzzene, M.: Dynamics of phononic materials and structures: historical origins, recent progress, and future outlook. Appl. Mech. Rev. 66, 40802 (2014)CrossRefGoogle Scholar
  19. 19.
    Droz, C., Lainé, J.-P., Ichchou, M.N., Inquiété, G.: A reduced formulation for the free-wave propagation analysis in composite structures. Compos. Struct. 113, 134–144 (2014)CrossRefGoogle Scholar
  20. 20.
    Zhou, C.W., Lainé, J.P., Ichchou, M.N., Zine, A.M.: Wave finite element method based on reduced model for one-dimensional periodic structures. Int. J. Appl. Mech. 7, 1550018 (2015)CrossRefGoogle Scholar
  21. 21.
    Howard, S.M., Pao, Y.-H.: Analysis and experiments on stress waves in planar trusses. J. Eng. Mech. 124, 884–891 (1998)CrossRefGoogle Scholar
  22. 22.
    Cai, G.Q., Lin, Y.K.: Wave propagation and scattering in structural networks. J. Eng. Mech. 117, 1555–1574 (1991)CrossRefGoogle Scholar
  23. 23.
    Pochhamer, L.: Uber die Fortpflanzzungsgeshwindigkeiten kleiner Schwingungen in einem unbergrenzten isotropen Kreiscylinder. Zeitschrift fur Mathematik 81, 324 (1876)Google Scholar
  24. 24.
    Chree, C.: The equations of an isotropic elastic solid in polar and cylindrical co-ordinates their solution and application. Trans. Camb. Philos. Soc. 14, 250 (1889)Google Scholar
  25. 25.
    Rigby, S.E., Barr, A.D., Clayton, M.: A review of Pochhammer–Chree dispersion in the Hopkinson bar. Proc. Inst. Civil Eng. Eng. Comput. Mech. 171(1), 3–13 (2018)Google Scholar
  26. 26.
    Ilyashenko, A.V., Kuznetsov, S.V.: Pochhammer-Chree waves: polarization of the axially symmetric modes. Arch. Appl. Mech. 88(8), 1385–1394 (2018)CrossRefGoogle Scholar
  27. 27.
    Jackson, D.: Fourier Series and Orthogonal Polynomials. Courier Corporation, Chelmsford (2012)zbMATHGoogle Scholar
  28. 28.
    Abadi, M.T.: Recursive solution for dynamic response of one-dimensional structures with time-dependent boundary conditions. J. Mech. Sci. Technol. 29, 4105–4111 (2015)CrossRefGoogle Scholar
  29. 29.
    Abadi, M.T.: An analytical model to predict the impact response of one-dimensional structures. Math. Mech. Solids 22, 2253–2268 (2017)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Aerospace Research InstituteMinistry of Science, Research and TechnologyTehranIran

Personalised recommendations