On the emergence of out-of-plane ferroelectricity in ultrathin films

  • Vishal BodduEmail author
  • Paul Steinmann


The presence of a spontaneous and switchable polarization is the defining property of a ferroelectric material. Such materials are indispensable in a countless number of industrial and scientific applications. Furthermore, the enhancement of ferroelectric property at reduced dimensions is crucial for continuous advancement in nanoelectronic applications. In this work, we investigate the onset of out-of-plane ferroelectricity in open-circuited stress-free BaTiO\(_3\) ultrathin films by performing molecular dynamics simulations using the core–shell model potential. In doing so, we try to obtain electric polarization hysteresis loops using an appropriate range of external electric loading. It is found that out-of-plane ferroelectricity is suppressed in ultrathin films with thickness 10 or less than 10 unit cells, indicating that there exists a critical thickness for the emergence of out-of-plane ferroelectricity in ultrathin films. It is also found that the ultrathin films exhibit asymmetrical hysteresis loops slightly above the critical thickness.


Ferroelectric hysteresis Thin films Atomistic simulations 



Both the authors would like to thank the German Research Foundation (DFG) for the financial support of this project under the research group Project FOR 1509 Ferroic Functional Materials. The second author also gratefully acknowledges the support by the Cluster of Excellence Engineering of Advanced Materials, Research Area A3.


  1. 1.
    Scott, J.F.: Ferroelectric Memories, vol. 3. Springer, Berlin (2013)Google Scholar
  2. 2.
    Xu, Y.: Ferroelectric Materials and Their Applications. Elsevier, Amsterdam (2013)Google Scholar
  3. 3.
    Lee, D., Lu, H., Gu, Y., Choi, S.Y., Li, S.D., Ryu, S., Paudel, T., Song, K., Mikheev, E., Lee, S., et al.: Emergence of room-temperature ferroelectricity at reduced dimensions. Science 349(6254), 1314 (2015)CrossRefGoogle Scholar
  4. 4.
    Ramesh, R.: Thin Film Ferroelectric Materials and Devices, vol. 3. Springer, Berlin (1997)CrossRefGoogle Scholar
  5. 5.
    Lichtensteiger, C., Triscone, J.M., Junquera, J., Ghosez, P.: Ferroelectricity and tetragonality in ultrathin PbTiO\(_3\) films. Phys. Rev. Lett. 94(4), 047603 (2005)CrossRefGoogle Scholar
  6. 6.
    Kornev, I.A., Fu, H., Bellaiche, L.: Properties of ferroelectric ultrathin films from first principles. J. Mater. Sci. 41(1), 137 (2006)CrossRefGoogle Scholar
  7. 7.
    Tybell, T., Ahn, C., Triscone, J.M.: Ferroelectricity in thin perovskite films. Appl. Phys. Lett. 75(6), 856 (1999)CrossRefGoogle Scholar
  8. 8.
    Fong, D.D., Stephenson, G.B., Streiffer, S.K., Eastman, J.A., Auciello, O., Fuoss, P.H., Thompson, C.: Ferroelectricity in ultrathin perovskite films. Science 304(5677), 1650 (2004)CrossRefGoogle Scholar
  9. 9.
    Junquera, J., Ghosez, P.: Critical thickness for ferroelectricity in perovskite ultrathin films. Nature 422(6931), 506 (2003)CrossRefGoogle Scholar
  10. 10.
    Tinte, S., Stachiotti, M.: Surface effects and ferroelectric phase transitions in BaTiO\(_3\) ultrathin films. Phys. Rev. B 64(23), 235403 (2001)CrossRefGoogle Scholar
  11. 11.
    Stachiotti, M.: Ferroelectricity in BaTiO\(_3\) nanoscopic structures. Appl. Phys. Lett. 84(2), 251 (2004)CrossRefGoogle Scholar
  12. 12.
    Tinte, S., Stachiotti, M., Sepliarsky, M., Migoni, R., Rodriguez, C.: Atomistic modelling of BaTiO\(_3\) based on first-principles calculations. J. Phys. Condens. Matter 11(48), 9679 (1999)CrossRefGoogle Scholar
  13. 13.
    Vielma, J.M., Schneider, G.: Shell model of BaTiO\(_3\) derived from ab-initio total energy calculations. J. Appl. Phys. 114(17), 174108 (2013)CrossRefGoogle Scholar
  14. 14.
    Waghmare, U., Rabe, K.: Ab initio statistical mechanics of the ferroelectric phase transition in PbTiO\(_3\) Phys. Rev. B 55(10), 6161 (1997)CrossRefGoogle Scholar
  15. 15.
    Liu, S., Grinberg, I., Takenaka, H., Rappe, A.M.: Reinterpretation of the bond-valence model with bond-order formalism: An improved bond-valence-based interatomic potential for PbTiO\(_3\). Phys. Rev. B 88(10), 104102 (2013)CrossRefGoogle Scholar
  16. 16.
    Ahn, C., Rabe, K., Triscone, J.M.: Ferroelectricity at the nanoscale: local polarization in oxide thin films and heterostructures. Science 303(5657), 488 (2004)CrossRefGoogle Scholar
  17. 17.
    Dawber, M., Rabe, K., Scott, J.: Physics of thin-film ferroelectric oxides. Rev. Mod. Phys. 77(4), 1083 (2005)CrossRefGoogle Scholar
  18. 18.
    Zhou, Z., Wu, D.: Domain structures of ferroelectric films under different electrical boundary conditions. AIP Adv. 5(10), 107206 (2015)CrossRefGoogle Scholar
  19. 19.
    Avrami, M.: Kinetics of phase change. II transformation-time relations for random distribution of nuclei. J. Chem. Phys. 8(2), 212 (1940)CrossRefGoogle Scholar
  20. 20.
    Tagantsev, A.K., Stolichnov, I., Setter, N., Cross, J.S., Tsukada, M.: Non-Kolmogorov-Avrami switching kinetics in ferroelectric thin films. Phys. Rev. B 66(21), 214109 (2002)CrossRefGoogle Scholar
  21. 21.
    Shur, V.Y., Rumyantsev, E.: Kinetics of ferroelectric domain structure: retardation effects. Ferroelectrics 191(1), 319 (1997)CrossRefGoogle Scholar
  22. 22.
    Boddu, V., Endres, F., Steinmann, P.: Molecular dynamics study of ferroelectric domain nucleation and domain switching dynamics. Sci. Rep. 7(1), 806 (2017)CrossRefGoogle Scholar
  23. 23.
    Merz, W.J.: Domain formation and domain wall motions in ferroelectric BaTiO\(_3\) single crystals. Phys. Rev. 95(3), 690 (1954)CrossRefGoogle Scholar
  24. 24.
    Fatuzzo, E., Merz, W.J.: Switching mechanism in triglycine sulfate and other ferroelectrics. Phys. Rev. 116(1), 61 (1959)CrossRefGoogle Scholar
  25. 25.
    Landauer, R.: Electrostatic considerations in BaTiO\(_3\) domain formation during polarization reversal. J. Appl. Phys. 28(2), 227 (1957)CrossRefGoogle Scholar
  26. 26.
    Ishibashi, Y.: Theory of polarization reversals in ferroelectrics based on Landau-type free energy. Jpa. J. Appl. Phys. 31(9R), 2822 (1992)CrossRefGoogle Scholar
  27. 27.
    Pertsev, N.A., Contreras, J.R., Kukhar, V.G., Hermanns, B., Kohlstedt, H., Waser, R.: Coercive field of ultrathin Pb(Zr\(_0.52\)Ti\(_0.48\))O\(_3\) epitaxial films. Appl. Phys. Lett. 83(16), 3356 (2003)CrossRefGoogle Scholar
  28. 28.
    Vizdrik, G., Ducharme, S., Fridkin, V., Yudin, S.: Kinetics of ferroelectric switching in ultrathin films. Phys. Rev. B 68(9), 094113 (2003)CrossRefGoogle Scholar
  29. 29.
    Gaynutdinov, R., Minnekaev, M., Mitko, S., Tolstikhina, A., Zenkevich, A., Ducharme, S., Fridkin, V.: Polarization switching kinetics in ultrathin ferroelectric barium titanate film. Phys. B Condens. Matter 424, 8 (2013)CrossRefGoogle Scholar
  30. 30.
    Highland, M.J., Fister, T.T., Richard, M.I., Fong, D.D., Fuoss, P.H., Thompson, C., Eastman, J.A., Streiffer, S.K., Stephenson, G.B.: Polarization switching without domain formation at the intrinsic coercive field in ultrathin ferroelectric PbTiO\(_3\). Phys. Rev. Lett. 105(16), 167601 (2010)CrossRefGoogle Scholar
  31. 31.
    Endres, F., Steinmann, P.: Size effects of 109\({^\circ }\) domain walls in rhombohedral barium titanate single crystals–a molecular statics analysis. J. Appl. Phys. 119(2), 024105 (2016)CrossRefGoogle Scholar
  32. 32.
    Endres, F., Steinmann, P.: Molecular statics simulations of ferroelectric barium titanate in the rhombohedral phase. GAMM-Mitteilungen 38(1), 132 (2015)MathSciNetCrossRefGoogle Scholar
  33. 33.
    Endres, F., Steinmann, P.: An extended molecular statics algorithm simulating the electromechanical continuum response of ferroelectric materials. Comput. Mech. 54(6), 1515 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Phillpot, S.R., Sinnott, S.B., Asthagiri, A.: Atomic-level simulation of ferroelectricity in oxides: current status and opportunities. Ann. Rev. Mater. Res. 37, 239 (2007)CrossRefGoogle Scholar
  35. 35.
    Mitchell, P., Fincham, D.: Shell model simulations by adiabatic dynamics. J. Phys. Condens. Matter 5(8), 1031 (1993)CrossRefGoogle Scholar
  36. 36.
    Wolf, D., Keblinski, P., Phillpot, S., Eggebrecht, J.: Exact method for the simulation of Coulombic systems by spherically truncated, pairwise \(r^{-1}\) summation. J. Chem. Phys. 110(17), 8254 (1999)CrossRefGoogle Scholar
  37. 37.
    Fennell, C.J., Gezelter, J.D.: Is the Ewald summation still necessary? Pairwise alternatives to the accepted standard for long-range electrostatics. J. Chem. Phys. 124(23), 234104 (2006)CrossRefGoogle Scholar
  38. 38.
    Landau, L.D., Bell, J., Kearsley, M., Pitaevskii, L., Lifshitz, E., Sykes, J.: Electrodynamics of Continuous Media, vol. 8. Elsevier, Amsterdam (2013)Google Scholar
  39. 39.
    Resta, R., Vanderbilt, D.: Physics of Ferroelectrics, pp. 31–68. Springer, Berlin (2007)CrossRefGoogle Scholar
  40. 40.
    Zhong, W., King-Smith, R., Vanderbilt, D.: Giant LO-TO splittings in perovskite ferroelectrics. Phys. Rev. Lett. 72(22), 3618 (1994)CrossRefGoogle Scholar
  41. 41.
    Plimpton, S.: Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117(1), 1 (1995)CrossRefzbMATHGoogle Scholar
  42. 42.
    Okamura, S., Miyata, S., Mizutani, Y., Nishida, T., Shiosaki, T.: Conspicuous voltage shift of DE hysteresis loop and asymmetric depolarization in Pb-based ferroelectric thin films. Jpn. J. Appl. Phys. 38(9S), 5364 (1999)CrossRefGoogle Scholar
  43. 43.
    Abe, K., Yanase, N., Yasumoto, T., Kawakubo, T.: Voltage shift phenomena in a heteroepitaxial BaTiO\(_3\) thin film capacitor. J. Appl. Phys. 91(1), 323 (2002)CrossRefGoogle Scholar
  44. 44.
    Wong, C., Shin, F.G.: Modeling of anomalous shift and asymmetric hysteresis behavior of ferroelectric thin films. J. Appl. Phys. 96(11), 6648 (2004)CrossRefGoogle Scholar
  45. 45.
    Kim, Y., Kim, D., Kim, J., Chang, Y., Noh, T., Kong, J., Char, K., Park, Y., Bu, S., Yoon, J.G., et al.: Critical thickness of ultrathin ferroelectric BaTiO\(_3\) films. Appl. Phys. Lett. 86(10), 102907 (2005)CrossRefGoogle Scholar
  46. 46.
    Ederer, C., Spaldin, N.A.: Effect of epitaxial strain on the spontaneous polarization of thin film ferroelectrics. Phys. Rev. Lett. 95(25), 257601 (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Chair of Applied MechanicsFriedrich-Alexander-Universität Erlangen-NürnbergErlangenGermany

Personalised recommendations