Force finding of cable–strut structures using a symmetry-based method

  • Jinyu Zhou
  • Wujun ChenEmail author
  • Jianhui Hu
  • Bing Zhao
  • Tengfei Zhang


Force finding of cable–strut structures is to identify self-equilibrated pre-stress states for structures with given shape, which is a crucial step in the structural design of flexible structures since pre-stresses significantly affect their mechanical behaviors. Utilizing symmetry properties of structures is generally considered as a practical way to facilitate the force finding process. To indicate the symmetric feature of structures, an algebraic indicator is proposed in the context of the equilibrium matrix theory. Furthermore, it is found that the orthogonal projection onto the null space of the equilibrium matrix could show the symmetry properties of structures geometrically. Then, a symmetry-based method of computing feasible pre-stress states is developed in the light of the above orthogonal projection. Finally, the proposed method is applied on three examples to confirm its validity and accuracy.


Symmetry Cable–strut structures Feasible pre-stress state Initial force design Force finding Distributed static indeterminacy 



  1. 1.
    Linkwitz, K., Schek, H.J.: Einige bemerkungen zur berechnung von vorgespannten seilnetzkonstruktionen. Ing. Arch. 40(3), 145–158 (1971)CrossRefGoogle Scholar
  2. 2.
    Schek, H.J.: The force density method for form finding and computation of general networks. Comput. Methods Appl. Mech. Eng. 3(1), 115–134 (1974)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Barnes, M.R.: Form finding and analysis of tension space structures by dynamic relaxation. Ph.D. thesis, City University London (1977)Google Scholar
  4. 4.
    Barnes, M.R.: Form finding and analysis of tension structures by dynamic relaxation. Int. J. Space Struct. 14(2), 89–104 (1999)CrossRefGoogle Scholar
  5. 5.
    Motro, R.: Tensegrity: Structural Systems for the Future. Elsevier, Amsterdam (2003)CrossRefGoogle Scholar
  6. 6.
    Zhang, L., Maurin, B., Motro, R.: Form-finding of nonregular tensegrity systems. J. Struct. Eng. ASCE 43(18–19), 5658–5673 (2006)Google Scholar
  7. 7.
    Haug, E., Powell, G.H.: Finite element analysis of nonlinear membrane structures. In: IASS Pacific Symposium, Part II on Tension Structures and Space Frames, Tokyo and Kyoto, pp. 124–135 (1972)Google Scholar
  8. 8.
    Crisfield, M.A.: Non-linear finite element analysis of solids and structures. Meccanica 32(6), 586–587 (1997)CrossRefGoogle Scholar
  9. 9.
    Carstens, S., Kuhl, D.: Non-linear static and dynamic analysis of tensegrity structures by spatial and temporal GALERKIN methods. J. Int. Assoc. Shell Spat. Struct. 46(2), 24–35 (2005)Google Scholar
  10. 10.
    Pagitz, M., Mirats-Tur, J.M.: Finite element based form-finding algorithm for tensegrity structures. Int. J. Solids Struct. 46(17), 3235–3240 (2009)CrossRefzbMATHGoogle Scholar
  11. 11.
    Estrada, G.G., Bungartz, H.J., Mohrdieck, C.: Numerical form-finding of tensegrity structures. Int. J. Solids Struct. 43(22–23), 6855–6868 (2006)CrossRefzbMATHGoogle Scholar
  12. 12.
    Zhang, J.Y., Ohsaki, M.: Adaptive force density method for form-finding problem of tensegrity structures. Int. J. Solids Struct. 43(18–19), 5658–5673 (2006)CrossRefzbMATHGoogle Scholar
  13. 13.
    Tran, H., Lee, J.: Advanced form-finding for cable–strut structures. Int. J. Solids Struct. 47(14–15), 1785–1794 (2010)CrossRefzbMATHGoogle Scholar
  14. 14.
    Lee, S., Lee, J.: Form-finding of tensegrity structures with arbitrary strut and cable members. Int. J. Mech. Sci. 85(2014), 55–62 (2014)CrossRefGoogle Scholar
  15. 15.
    Masic, M., Skelton, R.E., Gill, P.E.: Algebraic tensegrity form-finding. Int. J. Solids Struct. 42(16–17), 4833–4858 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Ohsaki, M., Zhang, J.Y.: Nonlinear programming approach to form-finding and folding analysis of tensegrity structures using fictitious material properties. Int. J. Solids Struct. 69(2015), 1–10 (2015)CrossRefGoogle Scholar
  17. 17.
    Xu, X., Luo, Y.: Form-finding of nonregular tensegrities using a genetic algorithm. Mech. Res. Commun. 37(1), 85–91 (2010)CrossRefzbMATHGoogle Scholar
  18. 18.
    Yamamoto, M., Gan, B.S., Fujita, K., Kurokawa, J.: A genetic algorithm based form-finding for tensegrity structure. Proc. Eng. 14, 2949–2956 (2011)CrossRefGoogle Scholar
  19. 19.
    Koohestani, K.: Form-finding of tensegrity structures via genetic algorithm. Int. J. Solids Struct. 49(5), 739–747 (2012)CrossRefGoogle Scholar
  20. 20.
    Koohestani, K., Guest, S.D.: A new approach to the analytical and numerical form-finding of tensegrity structures. Int. J. Solids Struct. 50(19), 2995–3007 (2013)CrossRefGoogle Scholar
  21. 21.
    Li, Y., Feng, X., Cao, Y., Gao, H.: A Monte Carlo form-finding method for large scale regular and irregular tensegrity structures. Int. J. Solids Struct. 47(14–15), 1888–1898 (2010)CrossRefzbMATHGoogle Scholar
  22. 22.
    Xu, X., Luo, Y.: Force finding of tensegrity systems using simulated annealing algorithm. J. Struct. Eng. ASCE 136(8), 1027–1031 (2010)CrossRefGoogle Scholar
  23. 23.
    Chen, Y., Feng, J., Wu, Y.: Prestress stability of pin-jointed assemblies using ant colony systems. Mech. Res. Commun. 41, 30–36 (2012)CrossRefGoogle Scholar
  24. 24.
    Hernàndez-Juan, S., Mirats-Tur, J.M.: Tensegrity frameworks: static analysis review. Mech. Mach. Theory 43(7), 859–881 (2008)CrossRefzbMATHGoogle Scholar
  25. 25.
    Tibert, A.G., Pellegrino, S.: Review of form-finding methods for tensegrity structures. Int. J. Space Struct. 26(3), 241–255 (2011)CrossRefGoogle Scholar
  26. 26.
    Pellegrino, S., Calladine, C.R.: Matrix analysis of statically and kinematically indeterminate frameworks. Int. J. Solids Struct. 22(4), 409–428 (1986)CrossRefGoogle Scholar
  27. 27.
    Pellegrino, S.: Structural computations with the singular value decomposition of the equilibrium matrix. Int. J. Solids Struct. 30(21), 3025–3035 (1993)CrossRefzbMATHGoogle Scholar
  28. 28.
    Quirant, J., Kazi-Aoual, M.N., Laporte, R.: Tensegrity systems: the application of linear programmation in search of compatible self-stress states. J. Int. Assoc. Shell Spat. Struct. 44(1), 18 (2003)Google Scholar
  29. 29.
    Quirant, J.: Self-stressed systems comprising elements with unilateral rigidity: self-stress States, mechanisms and tension setting. Int. J. Space Struct. 22(4), 203–214 (2007)CrossRefGoogle Scholar
  30. 30.
    Sánchez, R., Maurin, B., Kazi-Aoual, M.N., Motro, R.: Self-stress states identification and localization in modular tensegrity grids. Int. J. Space Struct. 22(4), 215–224 (2007)CrossRefGoogle Scholar
  31. 31.
    Zhou, J., Chen, W., Zhao, B., Dong, S.: A feasible symmetric state of initial force design for cable–strut structures. Arch. Appl. Mech. 87(8), 1385–1397 (2017)CrossRefGoogle Scholar
  32. 32.
    Ströbel, D.: Computational modeling concepts. In: The Ninth International Workshop on the Design and Practical Realization of Architectural Membrane Structures, Berlin (2004)Google Scholar
  33. 33.
    Zhang, L., Chen, W., Dong, S.: Initial pre-stress finding procedure and structural performance research for Levy cable dome based on linear adjustment theory. J. Zhejiang Univ. Sci. A 8(9), 1366–1372 (2007)CrossRefzbMATHGoogle Scholar
  34. 34.
    Ren, T., Chen, W., Fu, G.: Initial pre-stress finding and structural behaviors analysis of cable net based on linear adjustment theory. J. Shanghai Jiao Tong Univ. 13(2), 155–160 (2008)CrossRefzbMATHGoogle Scholar
  35. 35.
    Koohestani, K.: Automated element grouping and self-stress identification of tensegrities. Eng. Comput. 32(6), 1643–1660 (2015)CrossRefGoogle Scholar
  36. 36.
    Lee, S., Lee, J.: Advanced automatic grouping for form-finding of tensegrity structures. Struct. Multidiscip. Optim. 55(2017), 1–10 (2016)Google Scholar
  37. 37.
    Tran, H., Lee, J.: Initial self-stress design of tensegrity grid structures. Comput. Struct. 88(9–10), 558–566 (2010)CrossRefGoogle Scholar
  38. 38.
    Raj, R.P., Guest, S.D.: Using symmetry for tensegrity form-finding. J. Int. Assoc. Shell Spat. Struct. 47(3), 245–252 (2006)Google Scholar
  39. 39.
    Kangwai, R.D., Guest, S.D.: Symmetry-adapted equilibrium matrices. Int. J. Solids Struct. 37(11), 1525–1548 (2000)CrossRefzbMATHGoogle Scholar
  40. 40.
    Zhang, J.Y., Guest, S.D., Ohsaki, M.: Symmetric prismatic tensegrity structures. Part II: symmetry-adapted formulations. Int. J. Solids Struct. 46(1), 15–30 (2009)CrossRefzbMATHGoogle Scholar
  41. 41.
    Chen, Y., Feng, J., Ma, R., Zhang, Y.: Efficient symmetry method for calculating integral prestress modes of statically indeterminate cable–strut structures. J. Struct. Eng. ASCE 141(10), 1–11 (2015)Google Scholar
  42. 42.
    Zhou, J., Chen, W., Zhao, B., Qiu, Z., Dong, S.: Distributed indeterminacy evaluation of cable–strut structures: formulations and applications. J. Zhejiang Univ. Sci. A 16(9), 737–748 (2015)CrossRefGoogle Scholar
  43. 43.
    Ströbel, D.: Die Anwendung der Ausgleichungsrechnung auf Elastomechanische Systeme. PhD, Universität Stuttgart (1995)Google Scholar
  44. 44.
    Tran, H., Park, H., Lee, J.: A unique feasible mode of prestress design for cable domes. Finite Elem. Anal. Des. 59, 44–54 (2012)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Jinyu Zhou
    • 1
    • 2
  • Wujun Chen
    • 1
    Email author
  • Jianhui Hu
    • 1
  • Bing Zhao
    • 1
  • Tengfei Zhang
    • 1
  1. 1.Shanghai Jiao Tong UniversityShanghaiChina
  2. 2.Department of Housing and Urban–Rural Development of Sichuan ProvinceChengduChina

Personalised recommendations