Advertisement

Cluster of the Kendall-type adhesive microcontacts as a simple model for load sharing in bioinspired fibrillar adhesives

  • Ivan ArgatovEmail author
  • Qiang Li
  • Valentin L. Popov
Original
  • 47 Downloads

Abstract

The problem of multiple adhesive contact is considered for an elastic substrate modeled as a transversely isotropic elastic half-space. It is assumed that a large number of the Kendall-type microcontacts are formed between the substrate and circular rigid (i.e., nondeformable) and frictionless micropads, which are interconnected between themselves, thereby establishing a load sharing. The effect of microcontacts interaction is accounted for in the formulation of the detachment criterion for each individual microcontact. A number of different asymptotic models are presented for the case of dilute clusters of microcontacts with their accuracy tested against a special case of two-spot contact, for which an analytical solution is available. The pull-off force has been estimated and the effects of the array size and the microcontact spacing are studied. It is shown that the flexibility of the micropads fixation, which is similar to that observed in mushroom-shaped fibrils, significantly increases the pull-off force. The novelty of the presented approach is its ability to separate different effects in the multi-scale contact problem, which allows one to distinguish between different mathematical models developed for bioinspired fibrillar adhesives.

Keywords

Adhesive contact Cluster of microcontacts Load sharing 

Notes

Acknowledgements

The authors are grateful to the DFG (German Science Foundation—Deutsche Forschungsgemeinschaft) for financial support.

References

  1. 1.
    Boesel, L.C., Greiner, C., Arzt, E., del Campo, A.: Gecko-inspired surfaces: a path to strong and reversible dry adhesives. Adv. Mater. 22, 2125–2137 (2010)CrossRefGoogle Scholar
  2. 2.
    Brodoceanu, D., Bauer, C.T., Kroner, E., Arzt, E., Kraus, T.: Hierarchical bioinspired adhesive surfaces—a review. Bioinspir. Biomim. 11(5), 051001 (2016)CrossRefGoogle Scholar
  3. 3.
    O’Rorke, R.D., Steele, T.W.J., Taylor, H.K.: Bioinspired fibrillar adhesives: a review of analytical models and experimental evidence for adhesion enhancement by surface patterns. J. Adhes. Sci. Technol. 30, 362–391 (2016)CrossRefGoogle Scholar
  4. 4.
    Arzt, E., Gorb, S., Spolenak, R.: From micro to nano contacts in biological attachment devices. Proc. Natl. Acad. Sci. USA 100, 10603–10606 (2003)CrossRefGoogle Scholar
  5. 5.
    Gorb, S., Varenberg, M., Peressadko, A., Tuma, J.: Biomimetic mushroom-shaped fibrillar adhesive microstructure. J. R. Soc. Interface 4, 271–275 (2006)CrossRefGoogle Scholar
  6. 6.
    Huber, G., Mantz, H., Spolenak, R., Mecke, K., Jacobs, K., Gorb, S., Arzt, E.: Evidence for capillarity contributions to gecko adhesion from single spatula nanomechanical measurements. Proc. Natl. Acad. Sci. USA 102, 16293–16296 (2005)CrossRefGoogle Scholar
  7. 7.
    Arzt, E., Enders, S., Gorb, S.: Towards a micromechanical understanding of biological surface devices. Z. Metallk. 93, 345–353 (2002)CrossRefGoogle Scholar
  8. 8.
    Johnson, K.L., Kendall, K., Roberts, A.D.: Surface energy and the contact of elastic solids. Proc. R. Soc. A 324, 301–313 (1971)CrossRefGoogle Scholar
  9. 9.
    Kamperman, M., Kroner, E., del Campo, A., McMeeking, R.M., Arzt, E.: Functional adhesive surfaces with "gecko" effect: the concept of contact splitting. Adv. Eng. Mater. 12, 335–348 (2010)CrossRefGoogle Scholar
  10. 10.
    Bacca, M., Booth, J.A., Turner, K.L., McMeeking, R.M.: Load sharing in bioinspired fibrillar adhesives with backing layer interactions and interfacial misalignment. J. Mech. Phys. Solids 96, 428–444 (2016)CrossRefGoogle Scholar
  11. 11.
    Guidoni, G.M., Schillo, D., Hangen, U., Castellanos, G., Arzt, E., McMeeking, R.M., Bennewitz, R.: Discrete contact mechanics of a fibrillar surface with backing layer interactions. J. Mech. Phys. Solids 58, 1571–1581 (2010)CrossRefzbMATHGoogle Scholar
  12. 12.
    Kim, S., Sitti, M., Hui, C.Y., Long, R., Jagota, A.: Effect of backing layer thickness on adhesion of single-level elastomer fiber arrays. Appl. Phys. Lett. 91, 161905 (2007)CrossRefGoogle Scholar
  13. 13.
    Long, R., Hui, C.-Y., Kim, S., Sitti, M.: Modeling the soft backing layer thickness effect on adhesion of elastic microfiber arrays. J. Appl. Phys. 104, 044301 (2008)CrossRefGoogle Scholar
  14. 14.
    Noderer, W.L., Shen, L., Vajpayee, S., Glassmaker, N.J., Jagota, A., Hui, C.-Y.: Enhanced adhesion and compliance of film-terminated fibrillar surfaces. Proc. R. Soc. A 463, 2631–2654 (2007)CrossRefGoogle Scholar
  15. 15.
    Schargott, M., Popov, V.L., Gorb, S.: Spring model of biological attachment pads. Theor.Biol. 243, 48–53 (2006)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Fleck, N.A., Khaderi, S.N., McMeeking, R.M., Arzt, E.: Cohesive detachment of an elastic pillar from a dissimilar substrate. J. Mech. Phys. Solids 101, 30–43 (2017)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Khaderi, S.N., Fleck, N.A., Arzt, E., McMeeking, R.M.: Detachment of an adhered micropillar from a dissimilar substrate. J. Mech. Phys. Solids 75, 159–183 (2014)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Gao, H., Yao, H.: Shape insensitive optimal adhesion of nanoscale fibrillar structures. Proc. Natl. Acad. Sci. 101(21), 7851–7856 (2004)CrossRefGoogle Scholar
  19. 19.
    Akisanya, A.R., Fleck, N.A.: Interfacial cracking from the free-edge of a long bi-material strip. Int. J. Solids Struct. 34, 1645–1665 (1997)CrossRefzbMATHGoogle Scholar
  20. 20.
    Kendall, K.: The adhesion and surface energy of elastic solids. J. Phys. D Appl. Phys. 4, 1186–1195 (1971)CrossRefGoogle Scholar
  21. 21.
    Tang, T., Hui, C.-Y., Glassmaker, N.J.: Can a fibrillar interface be stronger and tougher than a non-fibrillar one? J. R. Soc. Interface 2, 505–516 (2005)CrossRefGoogle Scholar
  22. 22.
    Carbone, G., Pierro, E.: A review of adhesion mechanisms of mushroom-shaped microstructured adhesives. Meccanica 48, 1819–1833 (2013)CrossRefzbMATHGoogle Scholar
  23. 23.
    Galin, L.A.: Contact problems: the legacy of L.A. Galin. In: Gladwell, G.M.L. (ed.) Solid Mechanics and Its Applications, vol. 155. Springer, Dordrecht (2008).  https://doi.org/10.1007/978-1-4020-9043-1
  24. 24.
    Argatov, I.I.: Electrical contact resistance, thermal contact conductance and elastic incremental stiffness for a cluster of microcontacts: asymptotic modelling. Quart. J. Mech. Appl. Math. 64, 1–24 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Collins, W.D.: Some coplanar punch and crack problems in three-dimensional elastostatics. Proc. R. Soc. A 274, 507–528 (1963)MathSciNetzbMATHGoogle Scholar
  26. 26.
    Yao, H., Gao, H.: Optimal shapes for adhesive binding between two elastic bodies. J. Colloid Interface Sci. 298, 564–572 (2006)CrossRefGoogle Scholar
  27. 27.
    Conway, H.D., Farnham, K.A., Ku, T.C.: The indentation of a transversely isotropic halfspace by a rigid sphere. J. Appl. Mech. 34, 491–492 (1967)CrossRefGoogle Scholar
  28. 28.
    Johnson, K.L.: Contact Mechanics. Cambridge University Press, Cambridge (1985)CrossRefzbMATHGoogle Scholar
  29. 29.
    Greenwood, J.A.: Constriction resistance and the real area of contact. Br. J. Appl. Phys. 17, 1621–1622 (1966)CrossRefGoogle Scholar
  30. 30.
    Argatov, I.I.: On improving the asymptotic solution obtained by the method of matched expansions in the contact problem of elasticity theory. Comput. Math. Math. Phys. 40, 594–603 (2000)MathSciNetzbMATHGoogle Scholar
  31. 31.
    Aleksandrov, V.M.: Doubly periodic contact problems for an elastic layer. J. Appl. Math. Mech. 66, 297–305 (2002)MathSciNetCrossRefGoogle Scholar
  32. 32.
    Berman, A., Plemmons, R.J.: Nonnegative Matrices in the Mathematical Sciences. Academic Press, New York (1970)zbMATHGoogle Scholar
  33. 33.
    Sneddon, I.N.: The relation between load and penetration in the axisymmetric Boussinesq problem for a punch of arbitrary profile. Int. J. Eng. Sci. 3, 47–57 (1965)MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Borodich, F.M.: The Hertz-type and adhesive contact problems for depth-sensing indentation. Adv. Appl. Mech. 47, 225–366 (2014)CrossRefGoogle Scholar
  35. 35.
    Waters, J.F., Gao, H.J., Guduru, P.R.: On adhesion enhancement due to concave surface geometries. J. Adhesion 87, 194–213 (2011)CrossRefGoogle Scholar
  36. 36.
    del Campo, A., Greiner, C., Álvarez, I., Arzt, E.: Patterned surfaces with pillars with controlled 3D tip geometry mimicking bioattachment devices. Adv. Mater. 19, 1973–1977 (2007)CrossRefGoogle Scholar
  37. 37.
    Maugis, D.: Extension of the Johnson–Kendall–Roberts theory of the elastic contact of spheres to large contact radii. Langmuir 11, 679–682 (1995)CrossRefGoogle Scholar
  38. 38.
    Pohrt, R., Popov, V.L.: Adhesive contact simulation of elastic solids using local mesh-dependent detachment criterion in boundary elements method. Facta Univ. Mech. Eng. 13(1), 3–10 (2015)Google Scholar
  39. 39.
    Li, Q., Popov, V.L.: Boundary element method for normal non-adhesive and adhesive contacts of power-law graded elastic materials. Comput. Mech. 61, 319–329 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  40. 40.
    Popov, V.L., Pohrt, R., Li, Q.: Strength of adhesive contacts: Influence of contact geometry and material gradients. Friction 5, 308–325 (2017)CrossRefGoogle Scholar
  41. 41.
    Heepe, L., Carbone, G., Pierro, E., Kovalev, A.E., Gorb, S.N.: Adhesion tilt-tolerance in bio-inspired mushroom-shaped adhesive microstructure. Appl. Phys. Lett. 104, 011906 (2014)CrossRefGoogle Scholar
  42. 42.
    Lancaster, P.: Theory of Matrix. Academic Press, New York (1969)zbMATHGoogle Scholar
  43. 43.
    Cheung, E., Sitti, M.: Adhesion of biologically inspired polymer microfibers on soft surfaces. Langmuir 25, 6613–6616 (2009)CrossRefGoogle Scholar
  44. 44.
    Greiner, C., del Campo, A., Arzt, E.: Adhesion of bioinspired micropatterned surfaces: effects of pillar radius, aspect ratio, and preload. Langmuir 23, 3495–3502 (2007)CrossRefGoogle Scholar
  45. 45.
    Argatov, I.I., Mel’nyk, T.A.: Homogenization of a contact problem for a system of densely situated punches. Eur. J. Mech. A Solids 20, 91–98 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  46. 46.
    Bellman, R.: Introduction to the Theory of Matrices. Nauka, Moscow (1969)Google Scholar
  47. 47.
    Ahlberg, J.H., Nilson, E.N.: Convergence properties of the spline fit. J. Soc. Ind. Appl. Math. 11, 95–104 (1963)MathSciNetCrossRefzbMATHGoogle Scholar
  48. 48.
    Borodich, F.M.: Contact problems at nano/microscale and depth sensing indentation techniques. Mater. Sci. Forum 662, 53–76 (2011)CrossRefGoogle Scholar
  49. 49.
    Borodich, F.M., Keer, L.M.: Evaluation of elastic modulus of materials by adhesive (no-slip) nanoindentation. Proc. R. Soc. Ser. A 460, 507–514 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  50. 50.
    Borodich, F.M., Keer, L.M.: Contact problems and depth-sensing nanoindentation for frictionless and frictional boundary conditions. Int. J. Solids Struct. 41, 2479–2499 (2004)CrossRefzbMATHGoogle Scholar
  51. 51.
    Kragelsky, I.V.: Static friction between two rough surfaces. Bul. USSR Acad. Sci. Div. Tech. Sci. 10, 1621–1625 (1948). [in Russian]Google Scholar
  52. 52.
    Kragelsky, I.V., Dobychin, M.N., Kombalov, V.S.: In Friction and Wear—Calculation Methods. Pergamon Press, Oxford (1982)Google Scholar
  53. 53.
    Zhuravlev, V.A.: Theoretical basis of the Amonton–Coulomb law for the friction of unlubricated surfaces. J. Technol. Phys. 10(17), 1447–1452 (1940). [in Russian]Google Scholar
  54. 54.
    Zhuravlev, V.A.: On the question of theoretical justification of the Amontons–Coulomb law for friction of unlubricated surfaces. Proc. Inst. Mech. Eng. Part J J. Eng. Tribol. 221(8), 893–898 (2007)CrossRefGoogle Scholar
  55. 55.
    Goryacheva, I.G.: Contact Mechanics in Tribology. Kluwer, Dordrecht (1998)CrossRefzbMATHGoogle Scholar
  56. 56.
    Borodich, F.M., Savencu, O.: Hierarchical models of engineering rough surfaces and bio-inspired adhesives. Chapter 10. In: Heepe, L., Gorb, S., Xue, L. (eds.) Bio-inspired adhesives, pp. 179–219. Springer, New York (2017)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institut für MechanikTechnische Universität BerlinBerlinGermany

Personalised recommendations