Advertisement

Nonlinear vibration and dynamic stability analysis of rotor-blade system with nonlinear supports

  • Bingqiang Li
  • Hui MaEmail author
  • Xi Yu
  • Jin Zeng
  • Xumin Guo
  • Bangchun Wen
Original
  • 15 Downloads

Abstract

A dynamic model of a rotor-blade system is established considering the effect of nonlinear supports at both ends. In the proposed model, the shaft is modeled as a rotating beam where the gyroscopic effect is considered, while the shear deformation is ignored. The blades are modeled as Euler–Bernoulli beams where the centrifugal stiffening effect is considered. The equations of motion of the system are derived by Hamilton principle, and then, Coleman and complex transformations are adopted to obtain the reduced-order system. The nonlinear vibration and stability of the system are studied by multiple scales method. The influences of the normal rubbing force, friction coefficient, damping and support stiffness on the response of the rotor-blade system are investigated. The results show that the original hardening type of nonlinearity may be enhanced or transformed into softening type due to the positive or negative nonlinear stiffness terms of the bearing. Compared with the system with higher support stiffness, the damping of the bearing has a more powerful effect on the system stability under lower support stiffness. With the increase in rubbing force and support stiffness, the jump-down frequency, resonant peak and the frequency range in which the system has unstable responses increase.

Keywords

Main resonances Rotor-blade system Stability Nonlinear vibration 

Nomenclature

A, \(A'\)

Cross-sectional area of the shaft and blade

\({{A}}_{1}, {{A}}_{2}\)

The complex functions of the dimensionless displacements to be solved

c, \( c_{\mathrm{blade}}\), \( c_{\mathrm{bearing}}\)

Damping coefficients of the shaft, blade and bearing

\({{c}}_{\mathrm{b}{{y}}{1}}, {{c}}_{\mathrm{b}{{z}}{1}}, {{c}}_{\mathrm{b}{{y}}{ 2}}, {{c}}_{\mathrm{b}{{z}}{2}}\)

The damping coefficients of bearing 1 and bearing 2 along Y and Z directions

\({{D}}_{{0}},{{D}}_{{2}}\)

Partial derivative with respect to \({{T}}_{0}\) and \({{T}}_{2}\)

\(D_{11},D_{22},D_{33}\)

Torsional and flexural stiffness

\(e_{y}, e_{z}\)

Eccentricity with respect to y and z axes

E

Young’s modulus

\({{E}}_{{{y}}}, {{E}}_{{{z}}}\)

Misalignment along Y and Z directions

\(f_\mathrm{f}\) , \(f_\mathrm{b}\)

Forward and backward whirl mode frequencies

\(F_{\mathrm{n}}, F_{\mathrm{t}}\)

Normal and tangential rubbing forces at the tip of blade

\(F_{\mathrm{nmax}},{{F}}_{\mathrm{nmaxi}}\)

Maximum normal rubbing force

\(F_{\mathrm{t}{{i}}},{{F}}_{\mathrm{t}{{xi}}},{{F}}_{ \mathrm{t}{{yi}}},{{F}}_{\mathrm{n}i}\)

Rubbing forces on the ith blade

FFNF, FBNF

First-order forward and backward natural frequencies

FTNF

First-order torsional natural frequency

G

Shear modulus

I

Cross section inertia moment of the blade

\(I_{1}, I_{2}, I_{3}\)

Polar and diametral mass moments of inertia

\(I'_{11}\)

Area moment of inertia of the blade

\({{I}}_{\mathrm{disk}},{{J}}_{\mathrm{disk}}\)

Diametral and polar mass moment of inertia of the disk

\(I_\mathrm{s}\)

Cross section inertia moment of the shaft

k

Linear support stiffness

\(k_{1}, k_{2}, k_{3}\)

Shaft curvatures

L, l

Length of the blade and shaft

\({{l}}_{{1}},{{l}}_{{2}}\)

The distances of the disk to the left and right end

m

Mass per unit length of the shaft

\(m'\)

Density of the blade

\({{m}}_{\mathrm{D}},{{J}}_{\mathrm{p}},{{J}}_{\mathrm{d}}\)

The mass, the polar and diametral mass moment of inertia of bladed disk

\({{m}}_{\mathrm{disk}}\)

The mass of the disk

\(N_{11}\)

Longitudinal stiffness

\({{N}}_{\mathrm{b}}\)

The number of blades

\({{O}}_{{1}}\)

The center of rotating blade

\({{O}}_{{ 2}},{{O}}'_{{ 2}}\)

The center of static and rubbed casing

\(p^{*}\)

Dimensionless vibration displacement of the blade in the complex plane

\({\mathrm{ra}}\)

The ratio of excitation frequency to rotating frequency

\({{r}}_{\mathrm{g}}\)

The radius of the blade-tip orbit

\({{R}}_{{ 0}}\)

The radius of the casing

\(R_{\mathrm{d}}\)

The radius of the disk

SFNF, SBNF

Second-order forward and backward natural frequencies

t

Time

\({{t}}_{\mathrm{c}}\)

Contact time

\({{t}}_{\mathrm{p}}\)

Rotating period

\({{t}}_{0}\)

Start time of the rubbing

\({{T}},{{T}}_{\mathrm{shaft}},{{T}}_{\mathrm{blades}},{{T}}_{\mathrm{disk}}\)

Kinetic energy, kinetic energies of shaft, blades and disk

\({{T}}_{{ 0}},{{T}}_{{ 2}}\)

Components of time on large scale and second-order small scale

uvw

Longitudinal and transverse displacements of the shaft

\({{u}}_\mathrm{c}\)

The displacement of the casing

\({{V}},{{V}}_{\mathrm{shaft}},{{V}}_{\mathrm{blades}},{{V}}_{\mathrm{bearing}}\)

Potential energy, potential energies of shaft, blades and bearings

\({{W}},W_{F_{ni}} \)

The work, the work done by rubbing force applied on ith blade

\({{x}}_{\mathrm{b}},{{y}}_{\mathrm{b}}\)

The location of the point along the flapwise and chordwise directions

\({{x}}_{\mathrm{d}}\)

The location of the disk

\({{z}}^{*}\)

Dimensionless displacement of the shaft in the complex plane

Greek symbols

\(\alpha \)

strain along the neutral axis of the shaft

\(\alpha _{ni}, \beta _{ni}, c_{1i},c_{2i},c_{3i},c_{4i }(i=1,2)\)

The coefficients of the mode shape of the shaft to be solved

\(\beta _{\mathrm{c}}\)

Contact angle

\(\beta _\mathrm{f},\beta _\mathrm{b}\)

Dimensionless forward and backward whirl mode frequencies

\(\gamma \)

Stagger angle of the blade

\(\delta \)

Variational operator

\(\delta ({{x}})\)

Dirac delta function

\(\varepsilon \)

Non-dimensional small-scale parameter

\(\zeta \)

The distance of the point from the blade root

\({{\theta }}_{{{i}}},{{\theta }}_{{{yi}}},{{\theta }}_{{{zi}}}({{i=1,2}})\)

Angular displacements of the ith part of the shaft

\(\varTheta _\mathrm{f},\varTheta _\mathrm{b}\)

Forward and backward mode shape coefficients of the blades

\(\varTheta _{ni}(x)\,(i=1,2)\)

Piecewise nth-order mode shapes of angular displacements in the complex plane

k

Shear correction factor

\(\lambda _{i},r_{i} (i=1,2)\)

The coefficients of free vibration differential equation of the shaft to be solved

\(\varLambda \)

Vibration amplitude of the blade

\(\mu \)

Friction coefficient

\(\xi ,\eta \)

Coleman transformation parameters

\(\rho \)

Density of the shaft

\(\sigma \)

Detuning parameter

\(\psi ,\theta ,\beta \)

Euler angles

\({{\psi }}_{{\mathrm{f}}},{{\psi }}_{{\mathrm{b}}}\)

Forward and backward mode shapes of the rotating blades

\(\omega \)

The frequency of harmonic motion

\(\omega _{1},\omega _{2},\omega _{3}\)

Angular velocities of the rotating shaft

\(\varOmega \)

Rotating speed

\(\vartheta \)

Duffing term coefficient

\(\vartheta _{i}\)

The azimuth angle of the ith blade on the disk

\(\phi \)

Torsional deformation

\(\phi _\mathrm{f},\phi _\mathrm{b}\)

Forward and backward whirl mode shapes of the shaft

\(\phi _{i}\)

Angular position of the ith blade

\(\phi _{ni}\)

Piecewise mode shapes of the shaft at nth-order critical speed

\({{k}}_{\phi }\)

Torsional stiffness

Notes

Compliance with ethical standards

Funding

This project is supported by the National Natural Science Foundation (Grant No. 11772089), the Fundamental Research Funds for the Central Universities (Grant Nos. N170308028) and Program for the Innovative Talents of Higher Learning Institutions of Liaoning (LR2017035).

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Khadem, S.E., Shahgholi, M., Hosseini, S.A.A.: Primary resonances of a nonlinear in-extensional rotating shaft. Mech. Mach. Theory 45(8), 1067–1081 (2010)CrossRefzbMATHGoogle Scholar
  2. 2.
    Khadem, S.E., Shahgholi, M., Hosseini, S.A.A.: Two-mode combination resonances of an in-extensional rotating shaft with large amplitude. Nonlinear Dyn. 65(3), 217–233 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Shahgholi, M., Khadem, S.: Resonances of an in-extensional asymmetrical spinning shaft with speed fluctuations. Meccanica 48(1), 103–120 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Chiu, Y.Z., Chen, D.Z.: The coupled vibration in a rotating multi-disk rotor system. Int. J. Mech. Sci. 53(1), 1–10 (2011)CrossRefGoogle Scholar
  5. 5.
    Chiu, Y.Z., Huang, S.C.: The influence on coupling vibration of a rotor system due to a mistuned blade length. Int. J. Mech. Sci. 49(4), 522–532 (2007)CrossRefGoogle Scholar
  6. 6.
    Ma, H., Lu, Y., Wu, Z.Y., et al.: A new dynamic model of rotor-blade systems. J. Sound Vib. 357, 168–194 (2015)CrossRefGoogle Scholar
  7. 7.
    Genta, G., Feng, C., Tonoli, A.: Dynamics behavior of rotating bladed discs: a finite element formulation for the study of second and higher order harmonics. J. Sound Vib. 329(25), 5289–5306 (2010)CrossRefGoogle Scholar
  8. 8.
    Diken, H., Alnefaie, K.: Effect of unbalanced rotor whirl on blade vibrations. J. Sound Vib. 330(14), 3498–3506 (2011)CrossRefGoogle Scholar
  9. 9.
    Wang, L., Cao, D.Q., Huang, W.: Nonlinear coupled dynamics of flexible blade-rotor-bearing systems. Tribol. Int. 43(4), 759–778 (2010)CrossRefGoogle Scholar
  10. 10.
    Santos, I.F., et al.: Contribution to experimental validation of linear and non-linear dynamic models for representing rotor-blade parametric coupled vibrations. J. Sound Vib. 271(3–5), 883–904 (2004)CrossRefGoogle Scholar
  11. 11.
    Najafi, A., Ghazavi, M.R., Jafari, A.A.: Stability and Hamiltonian Hopf bifurcation for a nonlinear symmetric bladed rotor. Nonlinear Dyn. 78(2), 1049–1064 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Najafi, A., Ghazavi, M.R., Jafari, A.A.: Application of Krein’s theorem and bifurcation theory for stability analysis of a bladed rotor. Meccanica 49(6), 1507–1526 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Ghazavi, M.R., Najafi, A., Jafari, A.A.: Bifurcation and nonlinear analysis of nonconservative interaction between rotor and blade row. Mech. Mach. Theory 65, 29–45 (2013)CrossRefGoogle Scholar
  14. 14.
    Sanches, L., et al.: Instability zones for isotropic and anisotropic multibladed rotor configurations. Mech. Mach. Theory 46(8), 1054–1065 (2011)CrossRefzbMATHGoogle Scholar
  15. 15.
    Parent, M.O., Thouverez, F.: Phenomenological model for stability analysis of bladed rotor-to-stator contacts. Int. Symp. Transp. Phenom. Dyn. Rotating Mach. 10–15, 1–13 (2016)Google Scholar
  16. 16.
    Hou, L., Chen, Y.S., Fu, Y.Q., Li, Z.G.: Nonlinear response and bifurcation analysis of a Duffing type rotor model under sine maneuver load. Int. J. Non-linear Mech. 78, 133–141 (2016)CrossRefGoogle Scholar
  17. 17.
    Hou, L., Chen, Y.S., Cao, Q.J.: Nonlinear vibration phenomenon of an air-craft rub-impact rotor system due to hovering flight. Commun. Nonlinear Sci. Numer. Simulat. 19, 286–297 (2014)CrossRefzbMATHGoogle Scholar
  18. 18.
    Bolotin, V.V.: Nonconservative Problems of the Theory of Elastic Stability. Pergamon Press, New York (1963)zbMATHGoogle Scholar
  19. 19.
    Kleim, W., Pommer, C., Stoustrup, J.: Stability of rotor systems: a complex modeling approach. ZAMP 49, 644–655 (1998)zbMATHGoogle Scholar
  20. 20.
    Ehrich, F.F.: Shaft whirl induced by rotor. J. Appl. Mech. 31(2), 279–282 (1964)CrossRefzbMATHGoogle Scholar
  21. 21.
    Bucciarelli, L.L.: On the instability of rotating shafts due to internal damping. J. Appl. Mech. 49(2), 425–428 (1982)CrossRefzbMATHGoogle Scholar
  22. 22.
    Sorge, F., Cammalleri, M.: On the beneficial effect of rotor suspension anisotropy on viscous-dry hysteretic instability. Meccanica 47(7), 1705–1722 (2012)CrossRefzbMATHGoogle Scholar
  23. 23.
    Samantaray, A.K., Mukherjee, A., Bhattacharyya, R.: Some studies on rotors with polynomial type non-linear external and internal damping. Int. J. Non-linear Mech. 41(9), 1007–1015 (2006)CrossRefzbMATHGoogle Scholar
  24. 24.
    Genta, G.: On the stability of rotating blade arrays. J. Sound Vib. 273(4–5), 805–836 (2004)CrossRefGoogle Scholar
  25. 25.
    Bab, S., Khadem, S.E., Abbsi, A., Shahgholi, M.: Dynamic stability and nonlinear vibration analysis of a rotor system with flexible/rigid blades. Mech. Mach. Theory 105, 633–653 (2016)CrossRefGoogle Scholar
  26. 26.
    Petrov, E.: Multiharmonic analysis of nonlinear whole engine dynamics with bladed disc-casing rubbing contacts. In: ASME Turbo Expo 2012: Turbine Technical Conference and Exposition. American Society of Mechanical EngineersGoogle Scholar
  27. 27.
    Petrov, E.: Analysis of bifurcations in multiharmonic analysis of nonlinear forced vibrations of gas-turbine engine structures with friction and gaps. In: ASME Turbo Expo 2015: Turbine Technical Conference and Exposition. American Society of Mechanical EngineersGoogle Scholar
  28. 28.
    Sinha, S.K.: Non-linear dynamic response of a rotating radial Timoshenko beam with periodic pulse loading at the free-end. Int. J. Nonlinear Mech. 40, 113–149 (2015)CrossRefzbMATHGoogle Scholar
  29. 29.
    Sinha, S.K.: Combined torsional-bending-axial dynamics of a twisted rotating cantilever Timoshenko beam with contact-impact loads at the free end. J. Appl. Mech. 74, 505–522 (2007)CrossRefzbMATHGoogle Scholar
  30. 30.
    Turner, K., Adams, M., Dunn, M.: Simulation of engine blade tip-rub induced vibration. In: ASME Turbo Expo: Power for Land, Sea and Air, pp. 391–396 (2005)Google Scholar
  31. 31.
    Turner, K., Dunn, M., Padova, C.: Airfoil deflection characteristics during rub events. J. Turbomach. 134, 112–121 (2012)CrossRefGoogle Scholar
  32. 32.
    Kou, H.J., Yuan, H.Q.: Rub-induced non-linear vibrations of a rotating large deflection plate. Int. J. Nonlinear Mech. 58, 283–294 (2014)CrossRefGoogle Scholar
  33. 33.
    Ma, H., Wang, D., Tai, X.Y., Wen, B.C.: Vibration response analysis of blade-disk dovetail structure under blade tip rubbing condition. J. Vib. Control 23, 252–271 (2017)CrossRefGoogle Scholar
  34. 34.
    Wang, C., Zhang, D.Y., Ma, Y.H., Liang, Z.C., Hong, J.: Dynamic behavior of aero-engine rotor with fusing design suffering blade off. Chin. J. Aeronaut. 30, 918–931 (2017)CrossRefGoogle Scholar
  35. 35.
    Wang, C., Zhang, D.Y., Ma, Y.H., Liang, Z.C., Hong, J.: Theoretical and experimental investigation on the sudden unbalance and rub-impact in rotor system caused by blade off. Mech. Syst. Signal Process. 76–77, 111–135 (2016)CrossRefGoogle Scholar
  36. 36.
    Yu, P.C., Zhang, D.Y., Ma, Y.H., Hong, J.: Dynamic modeling and vibration characteristics analysis of the aero-engine dual-rotor system with fan blade out. Mech. Syst. Signal Process. 106, 158–175 (2018)CrossRefGoogle Scholar
  37. 37.
    Ma, H., Yin, F.L., Wu, Z.Y., Tai, L.X.Y.: Nonlinear vibration response analysis of a rotor-blade system with blade-tip rubbing. Nonlinear Dyn. 84, 1225–1258 (2016)MathSciNetCrossRefGoogle Scholar
  38. 38.
    Ma, H., Tai, X.Y., Han, Q.K., Wu, Z.Y., Wang, D., Wen, B.C.: A revised model for rubbing between rotating blade and elastic casing. J. Sound Vib. 337, 301–320 (2015)CrossRefGoogle Scholar
  39. 39.
    Yuan, H.Q.: Analysis Method of Rotor Dynamics. Metallurgical Industry Press, Beijing (2017)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Bingqiang Li
    • 1
  • Hui Ma
    • 1
    • 2
    Email author
  • Xi Yu
    • 1
  • Jin Zeng
    • 1
  • Xumin Guo
    • 1
  • Bangchun Wen
    • 1
  1. 1.School of Mechanical Engineering and AutomationNortheastern UniversityShenyangPeople’s Republic of China
  2. 2.Key Laboratory of Vibration and Control of Aero-Propulsion System Ministry of EducationNortheastern UniversityShenyangPeople’s Republic of China

Personalised recommendations