Archive of Applied Mechanics

, Volume 89, Issue 3, pp 535–544 | Cite as

Equilibrium unzipping at finite temperature

  • H. Borja da RochaEmail author
  • L. Truskinovsky


We study thermally activated unzipping, which is modeled as a debonding process. The system is modeled as a parallel bundle of elastically interacting breakable units loaded through a series spring. Using equilibrium statistical mechanics, we compute the reversible response of this mechanical system under quasi-static driving. Depending on the stiffness of the series spring, the system exhibits either ductile behavior, characterized by noncooperative debonding, or brittle behavior, with a highly correlated detachment of the whole bundle. We show that the ductile to brittle transition is of the second order and that it can also be controlled by temperature.



The authors thank R. Garcia-Garcia for helpful discussions. H.B.R. was supported by a Ph.D. fellowship from Ecole Polytechnique; L. T. was supported by the French Government under the Grants ANR-10-IDEX-0 0 01-02 PSL and ANR-17-CE08-0 047-02.


  1. 1.
    Kanninen, M., Popelar, C.: Advanced Fracture Mechanics. Oxford University Press, Oxford (1985)zbMATHGoogle Scholar
  2. 2.
    Brenner, S.S.: Mechanical behavior of sapphire whiskers at elevated temperatures. J. Appl. Phys. 33, 33 (1962)CrossRefGoogle Scholar
  3. 3.
    Selinger, R.L.B., Wang, Z.-G., Gelbart, W.M.: Statistical-thermodynamic approach to fracture. J. Chem. Phys. 95, 9128 (1991)CrossRefGoogle Scholar
  4. 4.
    Cook, R.F., Liniger, E.G.: Kinetics of indentation cracking in glass. J. Am. Ceram. Soc. 76, 1096 (1993)CrossRefGoogle Scholar
  5. 5.
    Petrov, V.A., Orlov, A.N.: Statistical kinetics of thermally activated fracture. Int. J. Fract. 12, 231 (1976)CrossRefGoogle Scholar
  6. 6.
    Xing, X.-S.: Nonequilibrium statistical theory of thermally activated delayed fracture. Eng. Fract. Mech. 38, 1 (1991)CrossRefGoogle Scholar
  7. 7.
    Berdichevsky, V., Le, K.C.: On the microcrack nucleation in brittle solids. Int. J. Fract. 133, L47 (2005)CrossRefzbMATHGoogle Scholar
  8. 8.
    K. K. a. A. S. Krausz, Fracture Kinetics of Crack Growth, 1st ed., Mechanical Behavior of Materials 1 (Springer Netherlands, 1988)Google Scholar
  9. 9.
    Pomeau, Y.: Brisure spontanée de cristaux bidimensionnels courbés. C. R. Acac. Sci. Paris Serie II , 553 (1992)Google Scholar
  10. 10.
    Ciliberto, S., Guarino, A., Scorretti, R.: The effect of disorder on the fracture nucleation process. Phys. D: Nonlinear Phenom. 158, 83 (2001)CrossRefzbMATHGoogle Scholar
  11. 11.
    Politi, A., Ciliberto, S., Scorretti, R.: Failure time in the fiber-bundle model with thermal noise and disorder. Phys. Rev. E 66, 026107 (2002)CrossRefGoogle Scholar
  12. 12.
    Bell, G.: Models for the specific adhesion of cells to cells. Science 200, 618 (1978)CrossRefGoogle Scholar
  13. 13.
    Schwarz, U.S., Safran, S.A.: Physics of adherent cells. Rev. Mod. Phys. 85, 1327 (2013)CrossRefGoogle Scholar
  14. 14.
    Evans, E., Ritchie, K.: Dynamic strength of molecular adhesion bonds. Biophys. J. 72, 1541 (1997)CrossRefGoogle Scholar
  15. 15.
    Chakrabarti, B., Nelson, D.R.: Shear unzipping of DNA. J. Phys. Chem. B 113, 3831 (2009)CrossRefGoogle Scholar
  16. 16.
    Hyeon, C., Thirumalai, D.D.: Minimal models for the structure and dynamics of nucleic acids. Mol. Model. At. Scale: Methods Appl. Quant. Biol. 141 (2014)Google Scholar
  17. 17.
    Mishra, R.K., Modi, T., Giri, D., Kumar, S.: On the rupture of DNA molecule. J. Chem. Phys. 142, 174910 (2015)CrossRefGoogle Scholar
  18. 18.
    Bergues-Pupo, A.E., Bergues, J.M., Falo, F., Fiasconaro, A.: Thermal and inertial resonances in DNA unzipping. Eur. Phys. J. E 38, 41 (2015)CrossRefGoogle Scholar
  19. 19.
    Strunz, T., Oroszlan, K., Schäfer, R., Güntherodt, H.-J.: Dynamic force spectroscopy of single DNA molecules. Proc. Natl. Acad. Sci. 96, 11277 (1999)CrossRefGoogle Scholar
  20. 20.
    Helenius, J., Heisenberg, C.-P., Gaub, H.E., Muller, D.J.: Single-cell force spectroscopy. J. Cell Sci. 121, 1785 (2008)CrossRefGoogle Scholar
  21. 21.
    Friedrichs, J., Helenius, J., Muller, D.J.: Quantifying cellular adhesion to extracellular matrix components by single-cell force spectroscopy. Nat. Protoc. 5, 1353 (2010)CrossRefGoogle Scholar
  22. 22.
    Gonzalez-Rodriguez, D., Bonnemay, L., Elgeti, J., Dufour, S., Cuvelier, D., Brochard- Wyart, F.: Detachment and fracture of cellular aggregates. Soft Matter 9, 2282 (2013)CrossRefGoogle Scholar
  23. 23.
    Hogan, B., Babataheri, A., Hwang, Y., Barakat, A.I., Husson, J.: Characterizing cell adhesion by using micropipette aspiration. Biophys. J. 109, 209 (2015)CrossRefGoogle Scholar
  24. 24.
    Selinger, R.L.B., Wang, Z.-G., Gelbart, W.M., Ben-Shaul, A.: Statistical-thermodynamic approach to fracture. Phys. Rev. A 43, 4396 (1991)CrossRefGoogle Scholar
  25. 25.
    Roux, S.: Thermally activated breakdown in the fiber-bundle model. Phys. Rev. E 62, 6164 (2000)CrossRefGoogle Scholar
  26. 26.
    Scorretti, R., Ciliberto, S., Guarino, A.: Disorder enhances the effects of thermal noise in the fiber bundle model. EPL Europhys. Lett. 55, 626 (2001)CrossRefGoogle Scholar
  27. 27.
    Alava, M.J., Nukala, P.K.V.V., Zapperi, S.: Statistical models of fracture. Adv. Phys. 55, 349 (2006)CrossRefGoogle Scholar
  28. 28.
    Virgilii, A., Petri, A., Salinas, S.R.: A thermodynamical fibre bundle model for the fracture of disordered materials. J. Stat. Mech. Theory Exp. 2007, P04009 (2007)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Yoshioka, N., Kun, F., Ito, N.: Kinetic Monte Carlo algorithm for thermally induced breakdown of fiber bundles. Phys. Rev. E 91, 033305 (2015)CrossRefGoogle Scholar
  30. 30.
    Erdmann, T., Schwarz, U.S.: Stability of adhesion clusters under constant force. Phys. Rev. Lett. 92, 108102 (2004)CrossRefGoogle Scholar
  31. 31.
    Peyrard, M., Bishop, A.R.: Statistical mechanics of a nonlinear model for DNA denaturation. Phys. Rev. Lett. 62, 2755 (1989)CrossRefGoogle Scholar
  32. 32.
    Manghi, M., Destainville, N.: Physics of base-pairing dynamics in DNA. Phys. Rep. 631, 1 (2016)MathSciNetCrossRefGoogle Scholar
  33. 33.
    Vologodskii, A., Frank-Kamenetskii, M.D.: DNA melting and energetics of the double helix. Phys. Life Rev. (2017)Google Scholar
  34. 34.
    Erdmann, T., Albert, P.J., Schwarz, U.S.: Stochastic dynamics of small ensembles of non-processive molecular motors: the parallel cluster model. J. Chem. Phys. 139, 175104 (2013)CrossRefGoogle Scholar
  35. 35.
    Caruel, M., Truskinovsky, L.: Physics of muscle contraction. Rep. Prog. Phys. 81, 036602 (2018)MathSciNetCrossRefGoogle Scholar
  36. 36.
    Seifert, U.: Rupture of multiple parallel molecular bonds under dynamic loading. Phys. Rev. Lett. 84, 2750 (2000)CrossRefGoogle Scholar
  37. 37.
    Erdmann, T., Schwarz, U.: Impact of receptor-ligand distance on adhesion cluster stability. Eur. Phys. J. E 22, 123 (2007)CrossRefGoogle Scholar
  38. 38.
    Erdmann, T., Schwarz, U.S.: Bistability of cell-matrix adhesions resulting from nonlinear receptor-ligand dynamics. Biophys. J. 91, L60 (2006)CrossRefGoogle Scholar
  39. 39.
    Huxley, A.F., Simmons, R.M.: Proposed mechanism of force generation in striated muscle. Nature 233, 533 (1971)CrossRefGoogle Scholar
  40. 40.
    Seifert, U.: Dynamic strength of adhesion molecules: role of rebinding and self-consistent rates. EPL Europhys. Lett. 58, 792 (2002)CrossRefGoogle Scholar
  41. 41.
    Kramers, H.: Brownian motion in a field of force and the diffusion model of chemical reactions. Physica 7, 284 (1940)MathSciNetCrossRefzbMATHGoogle Scholar
  42. 42.
    Hänggi, P., Talkner, P., Borkovec, M.: Reaction-rate theory: fifty years after Kramers. Rev. Mod. Phys. 62, 251 (1990)MathSciNetCrossRefGoogle Scholar
  43. 43.
    Pradhan, S., Hansen, A., Chakrabarti, B.K.: Failure processes in elastic fiber bundles. Rev. Mod. Phys. 82, 499 (2010)CrossRefGoogle Scholar
  44. 44.
    Hansen, A., Hemmer, P., Pradhan, S.: The Fiber Bundle Model: Modeling Failure in Materials, Statistical Physics of Fracture and Breakdown. Wiley, New Jersey (2015)CrossRefGoogle Scholar
  45. 45.
    Batra, R.: Elements of Continuum Mechanics, AIAA education series (American Institute of Aeronautics & Astronautics, 2006)Google Scholar
  46. 46.
    Kreuzer, H.J., Payne, S.H.: Stretching a macromolecule in an atomic force microscope: statistical mechanical analysis. Phys. Rev. E 63, 021906 (2001)CrossRefGoogle Scholar
  47. 47.
    Caruel, M., Truskinovsky, L.: Bi-stability resistant to fluctuations. J. Mech. Phys. Solids 109, 117 (2017)MathSciNetCrossRefGoogle Scholar
  48. 48.
    Fuhrmann, A., Engler, A.J.: The cytoskeleton regulates cell attachment strength. Biophys. J. 109, 57 (2015)CrossRefGoogle Scholar
  49. 49.
    Discher, D.E., Janmey, P., Wang, Y.-L.: Tissue cells feel and respond to the stiffness of their substrate. Science 310, 1139 (2005)CrossRefGoogle Scholar
  50. 50.
    Yeung, T., Georges, P.C., Flanagan, L.A., Marg, B., Ortiz, M., Funaki, M., Zahir, N., Ming, W., Weaver, V., Janmey, P.A.: Effects of substrate stiffness on cell morphology, cytoskeletal structure, and adhesion. Cell Motil. 60, 24 (2004)CrossRefGoogle Scholar
  51. 51.
    Jülicher, F., Prost, J.: Cooperative molecular motors. Phys. Rev. Lett. 75, 2618 (1995)CrossRefGoogle Scholar
  52. 52.
    Delaplace, A., Roux, S., Jaudier Cabot, G.P.: Damage cascade in a softening interface. Int. J. Solids Struct. 36, 1403 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  53. 53.
    Campa, A., Dauxois, T., Ruffo, S.: Statistical mechanics and dynamics of solvable models with long-range interactions. Phys. Rep. 480, 57 (2009)MathSciNetCrossRefGoogle Scholar
  54. 54.
    Caruel, M., Truskinovsky, L.: Statistical mechanics of the Huxley-Simmons model. Phys. Rev. E 93, 062407 (2016)MathSciNetCrossRefGoogle Scholar
  55. 55.
    Balian, R.: From microphysics to macrophysics: methods and applications of statistical physics, theoretical and mathematical physics. Springer, Berlin (2007)zbMATHGoogle Scholar
  56. 56.
    Puglisi, G., Truskinovsky, L.: Cohesion-decohesion asymmetry in geckos. Phys. Rev. E 87, 032714 (2013)CrossRefGoogle Scholar
  57. 57.
    Sheshka, R., Recho, P., Truskinovsky, L.: Rigidity generation by nonthermal fluctuations. Phys. Rev. E 93, 052604 (2016)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.LMS, CNRS-UMR 7649, Ecole Polytechnique, Université Paris-SaclayPalaiseauFrance
  2. 2.PMMH, CNRS - UMR 7636 PSL-ESPCIParisFrance

Personalised recommendations