Advertisement

Archive of Applied Mechanics

, Volume 89, Issue 4, pp 629–637 | Cite as

Prediction of fatigue life under multiaxial loading by using a critical plane-based model

  • Jing LiEmail author
  • Yuan-ying Qiu
  • Chun-wang Li
  • Zhong-ping Zhang
Original
  • 96 Downloads

Abstract

Based on the critical plane concept, a simple model is proposed to estimate fatigue lives of metals subjected to both proportional and non-proportional loadings. In the proposed model, both parameters of shear and normal strain ranges are considered in the equivalent strain which is made with both parameters by means of the von Mises criterion. The maximum normal stress acting on the maximum shear strain range plane is introduced in the proposed model to take into account the effects of non-proportional hardening. Procedures used to determine the damage parameters acting on the plane of maximum shear strain range are also presented.

Keywords

Multiaxial fatigue Critical plane Life prediction model Non-proportional hardening 

Notes

Acknowledgements

The authors gratefully acknowledge the financial support of the National Natural Science Foundation of China (Nos. 51601221 and 51575524), and the Fundamental Research Funds for the Central University (No. JB180402).

References

  1. 1.
    Karolczuk, A., Macha, E.: A review of critical plane orientations in multiaxial fatigue failure criteria of metallic materials. Int. J. Fract. 134, 267–304 (2005)CrossRefzbMATHGoogle Scholar
  2. 2.
    Fatemi, A., Shamsaei, N.: Multiaxial fatigue: an overview and some approximation models for life estimation. Int. J. Fatigue 33, 948–958 (2011)CrossRefGoogle Scholar
  3. 3.
    Santecchia, E., Hamouda, A.M.S., Musharavati, F., Zalnezhad, E., Cabibbo, M., El Mehtedi, M., Spigarelli, S.: A review on fatigue life prediction methods for metals. Adv. Mater. Sci. Eng. 2016, 1–26 (2016)CrossRefGoogle Scholar
  4. 4.
    Carpinteri, A., Spagnoli, A., Vantadori, S.: A review of multiaxial fatigue criteria for random variable amplitude loads. Fatigue Fract. Eng. Mater. Struct. 40, 1007–1036 (2017)CrossRefGoogle Scholar
  5. 5.
    Kandil, F.A., Brown, M.W., Miller, K.J.: Biaxial low-cycle fatigue fracture of 316 stainless steel at elevated temperatures. In: Book 280, pp. 203–210. The Metals Society, London (1982)Google Scholar
  6. 6.
    Wang, C.H., Brown, M.W.: A path-independent parameter for fatigue under proportional and non-proportional loading. Fatigue Fract. Eng. Mater. Struct. 16, 1285–1298 (1993)CrossRefGoogle Scholar
  7. 7.
    Shang, D.G., Wang, D.J.: A new multiaxial fatigue damage model based on the critical plane approach. Int. J. Fatigue 20, 241–245 (1998)CrossRefGoogle Scholar
  8. 8.
    Fatemi, A., Socie, D.F.: A critical plane approach to multiaxial fatigue damage including out-of-phase. Fatigue Fract. Eng. Mater. Struct. 11, 149–165 (1988)CrossRefGoogle Scholar
  9. 9.
    Qu, W.L., Zhao, E.N., Zhou, Q., Pi, Y.L.: Multiaxial low-cycle fatigue life evaluation under different non-proportional loading paths. Fatigue Fract. Eng. Mater. Struct. 41, 1064–1076 (2018)CrossRefGoogle Scholar
  10. 10.
    Socie, D.: Multiaxial fatigue damage models. J. Eng. Mater. Technol. 109, 293–298 (1987)CrossRefGoogle Scholar
  11. 11.
    Chu, C.C.: Fatigue damage calculation using the critical plane approach. J. Eng. Mater. Technol. 117, 41–49 (1995)CrossRefGoogle Scholar
  12. 12.
    Glinka, G., Wang, G., Plumtree, A.: Mean stress effects in multiaxial fatigue. Fatigue Fract. Eng. Mater. Struct. 18, 755–764 (1995)CrossRefGoogle Scholar
  13. 13.
    Morrow, J.: Fatigue properties of metals. Section 3.2, Fatigue Design Handbook, Pub. No. AE-4, (Society of Automotive Engineers, Warrendale, PA), pp. 21–29 (1968)Google Scholar
  14. 14.
    Jiang, Y., Sehitoglu, H.: Fatigue and stress analysis of rolling contact. Report no. 161, UILU-ENG 92-3602, University of Illinois at Urbana-Champaign (1992)Google Scholar
  15. 15.
    Ince, A., Glinka, G.: A generalized fatigue damage parameter for multiaxial fatigue life prediction under proportional and non-proportional loadings. Int J Fatigue 62, 34–41 (2014)CrossRefGoogle Scholar
  16. 16.
    Yu, Z.Y., Zhu, S.P., Liu, Q., Liu, Y.: Multiaxial fatigue damage parameter and life prediction without any additional material constants. Materials 10, 923–938 (2017)CrossRefGoogle Scholar
  17. 17.
    Zhu, S.P., Yu, Z.Y., Correia, J., De Jesus, A., Berto, F.: Evaluation and compare son of critical plane criteria for multiaxial fatigue analysis of ductile and brittle materials. Int. J. Fatigue 112, 279–288 (2018)CrossRefGoogle Scholar
  18. 18.
    Correia, J., Apetre, N., Arcari, A., De Jesus, A., Muniz-Clavente, M., Calcada, R., Berto, F., Fernandez-Canteli, A.: Generalized probabilistic model allowing for various fatigue damage variables. Int. J. Fatigue 100, 187–194 (2017)CrossRefGoogle Scholar
  19. 19.
    Castillo, E., Fernandez-Canteli, A.: A Unified Statistical Methodology for Modeling Fatigue Damage. Springer, Berlin (2009)zbMATHGoogle Scholar
  20. 20.
    Calvente, M.M., Blason, S., Canteli, A.Fernandez: A probabilistic approach for multiaxial fatigue criteria. Frattura ed Integrità Strutturale 39, 160–165 (2017)Google Scholar
  21. 21.
    Liu, Y., Mahadevan, S.: Multiaxial high-cycle fatigue criterion and life prediction for metals. Int. J. Fatigue 27, 790–800 (2005)CrossRefzbMATHGoogle Scholar
  22. 22.
    Liu, Y., Mahadevan, S.: Strain-based multiaxial fatigue damage modelling. Fatigue Fract. Eng. Mater. Struct. 28, 1177–1189 (2005)CrossRefGoogle Scholar
  23. 23.
    Wei, H., Liu, Y.: A critical plane-energy model for multiaxial fatigue life prediction. Fatigue Fract. Eng. Mater. Struct. 40, 1973–1983 (2017)CrossRefGoogle Scholar
  24. 24.
    Garud, Y.S.: A new approach to the evaluation of fatigue under multiaxial loadings. J. Eng. Mater. Technol. 103, 118–125 (1981)CrossRefGoogle Scholar
  25. 25.
    Lu, Y., Wu, H., Zhong, Z.: A simple energy-based model for non-proportional low-cycle multiaxial fatigue life prediction under constant amplitude loading. Fatigue Fract. Eng. Mater. Struct. 41, 1402–1411 (2018)CrossRefGoogle Scholar
  26. 26.
    Lu, C., Melendez, H., Martinez-Esnaola, J.M.: Fatigue damage prediction in multiaxial loading using a new energy-based parameter. Int. J. Fatigue 104, 99–111 (2017)CrossRefGoogle Scholar
  27. 27.
    Lu, C., Melendez, H., Martinez-Esnaola, J.M.: Modelling multiaxial fatigue with a new combination of critical plane definition and energy-based criterion. Int. J. Fatigue 108, 109–115 (2018)CrossRefGoogle Scholar
  28. 28.
    Lu, C., Melendez, H., Martinez-Esnaola, J.M.: A universally applicable multiaxial fatigue criterion in 2D cyclic loading. Int. J. Fatigue 110, 99–111 (2018)CrossRefGoogle Scholar
  29. 29.
    Carpinteri, A., Ronchei, C., Scorza, D., Vantadori, S.: Fatigue life estimation for multiaxial low cycle fatigue regime: the influence of the effective Poisson ratio value. Theor. Appl. Fract. Mech. 79, 77–83 (2015)CrossRefGoogle Scholar
  30. 30.
    Carpinteri, A., Berto, F., Campagnolo, A., Fortese, G., Ronchei, C., Scorza, D., Vantadori, S.: Fatigue assessment of notched specimens by means of a critical plane-based criterion and energy concepts. Theor. Appl. Fract. Mech. 84, 57–63 (2016)CrossRefGoogle Scholar
  31. 31.
    Li, J., Li, C.W., Zhang, Z.P.: Modeling of stable cyclic stress–strain responses under non-proportional loading. ZAMM. Z. Angew. Math. Mech. 98, 388–411 (2018)MathSciNetCrossRefGoogle Scholar
  32. 32.
    Kanazawa, K., Miller, K.J., Brown, M.W.: Low cycle fatigue under out-of-phase loading conditions. J. Eng. Mater. Technol. 99, 222–228 (1977)CrossRefGoogle Scholar
  33. 33.
    Ohkawa, I., Takahashi, H., Moriwaki, M., Misumi, M.: A study on fatigue crack growth under out-of-phase combined loadings. Fatigue Fract. Eng. Mater. Struct. 20, 929–940 (1997)CrossRefGoogle Scholar
  34. 34.
    McClaflin, D., Fatemi, A.: Torsional deformation and fatigue of hardened steel including mean stress and strain gradient effect. Int. J. Fatigue 26, 773–784 (2004)CrossRefGoogle Scholar
  35. 35.
    Tair, S., Tnoue, T., Yoshida, T.: Low cycle fatigue under multiaxial stress in the case of combined cyclic tension–compression and cyclic torsion at room temperature. Proc. 12th Jpn. Cong. Test Mater. 2, 50–55 (1969)Google Scholar
  36. 36.
    Nitta, A., Ogata, T., Kuwabara, K.: Fracture mechanisms and life assessment under high strain biaxial cyclic loading of type 304 stainless steel. Fatigue Fract. Eng. Mater. Struct. 12, 77–92 (1989)CrossRefGoogle Scholar
  37. 37.
    Jiang, Y., Hertel, O., Vormwald, M.: An experimental evaluation of three critical plane multiaxial fatigue criteria. Int. J. Fatigue 29, 1490–1502 (2007)CrossRefGoogle Scholar
  38. 38.
    Shamsaei, N., Gladskyi, M., Panasovskyi, K., Shukaev, S., Fatimi, A.: Multiaxial fatigue of titanium including step loading and load path alteration and sequence effects. Int. J. Fatigue 32, 1862–1874 (2010)CrossRefGoogle Scholar
  39. 39.
    Gao, Z., Zhao, T., Wang, X., Jiang, Y.: Multiaxial fatigue of 16MnR steel. J. Press. Vess. Technol. 131, 021403 (2009)CrossRefGoogle Scholar
  40. 40.
    Gates, N.R., Fatemi, A.: On the consideration of normal and shear stress interaction in multiaxial fatigue damage analysis. Int. J. Fatigue 100, 322–336 (2017)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Jing Li
    • 1
    Email author
  • Yuan-ying Qiu
    • 1
  • Chun-wang Li
    • 2
  • Zhong-ping Zhang
    • 2
  1. 1.School of Mechatronic EngineeringXidian UniversityXi’anChina
  2. 2.The Science InstituteAir Force Engineering UniversityXi’anChina

Personalised recommendations