Advertisement

Microscopic investigation of the reasons for field-dependent changes in the properties of magnetic hybrid materials using X-ray microtomography

  • M. Schümann
  • Th. Gundermann
  • S. Odenbach
Original
  • 43 Downloads

Abstract

Magnetic hybrid materials, i.e. materials containing magnetic particles as magnetoactive component in a non-magnetic matrix, can be controlled concerning their properties by means of moderate magnetic fields. The magnetic field-driven change in their properties is a result of the complex interaction of the magnetic particles and—in case of elastomers used as non-magnetic matrix—of the interaction of the particles with the surrounding matrix. These complex interactions are the major problem to achieve an understanding of magnetic hybrid materials on a level allowing tailored material production for certain application purposes. Such an understanding requires a scale bridging description of the material behaviour and of the resulting magnetically induced effects. In this context, the term scale bridging means that it is necessary to couple changes in the internal structure of a magnetic hybrid material, i.e. effects taking place on the scale of the magnetic particles, with macroscopic changes in its properties. Such a scale bridging understanding can not only be achieved on theoretical level. The complexity of the interparticle interaction and of the interaction of the particles with matrix as well as the vice versa coupling of both kind of interactions requires experimental data as input for theoretical approaches: moreover, such data provide a benchmark for respective predictions. Coupling magnetomechanical investigations on the macroscale with microscopic characterization using X-ray microtomography as a tool for a detailed visualization of the microstructure provides the required experimental approach to a scale bridging description of such smart materials. Within this paper, we will outline the required techniques for micro-and macroscopic investigations and will highlight the possibilities given by such an approach with a couple of examples.

Keywords

Magnetic hybrid materials Magnetorheological effect X-ray microtomography 

Notes

Acknowledgements

This work was supported by Deutsche Forschungsgemeinschaft (DFG) within the Project OD18/21, in the frame of the priority program SPP1681 ‘Field controlled particle matrix interactions: synthesis multiscale modelling and application of magnetic hybrid materials’.

References

  1. 1.
    Winslow, W.M.: Induced vibration of suspensions. J. Appl. Phys. 20(12), 1137–1140 (1949).  https://doi.org/10.1063/1.1698285 CrossRefGoogle Scholar
  2. 2.
    Halsey, T.C.: Electrorheological fluids. Science 258(5083), 761–766 (1992).  https://doi.org/10.1126/science.258.5083.761 CrossRefGoogle Scholar
  3. 3.
    Kchit, N., Bossis, G.: Piezoresistivity of magnetorheological elastomers. J. Phys. Condens. Matter 20(20), 204136 (2008).  https://doi.org/10.1088/0953-8984/20/20/204136 CrossRefGoogle Scholar
  4. 4.
    Ghafoorianfar, N., Wang, X., Gordaninejad, F.: Combined magnetic and mechanical sensing of magnetorheological elastomers. Smart Mater. Struct. 23(5), 055010 (2014).  https://doi.org/10.1088/0964-1726/23/5/055010 CrossRefGoogle Scholar
  5. 5.
    Rabinow, J.: The magnetic fluid clutch. Electr. Eng. 67(12), 1167 (1948).  https://doi.org/10.1109/EE.1948.6444497 CrossRefGoogle Scholar
  6. 6.
    Rabinow, J.: Magnetic fluid torque and force transmitting device. US Patent Specification 2575360 (1951)Google Scholar
  7. 7.
    Papell, S.S.: Low viscosity magnetic fluid obtained by the colloidal suspension of magnetic particles. U.S. Patent No. 3,215,572. U.S. Patent and Trademark Office, Washington (1965)Google Scholar
  8. 8.
    Neuringer, J.L., Rosensweig, R.E.: Ferrohydrodynamics. Phys. Fluids 7(12), 1927–1937 (1964).  https://doi.org/10.1063/1.1711103 MathSciNetCrossRefGoogle Scholar
  9. 9.
    Rosensweig, R.E.: Ferrohydrodynamics. Cambridge University Press, Cambridge (1985)Google Scholar
  10. 10.
    Blums, E., Cebers, A., Maiorov, M.M.: Magnetic fluids. Walter de Gruyter, Berlin (1997)Google Scholar
  11. 11.
    Odenbach, S., Thurm, S.: Magnetoviscous effects in ferrofluids. In: Odenbach, S. (ed.) Ferrofluids, pp. 185–201. Springer, Berlin.  https://doi.org/10.1007/3-540-45646-5_10 (2002)
  12. 12.
    Berkovsky, B.M., Bashtovoy, V.: Magnetic Fluids and Applications Handbook. Begell House Inc, New York (1996)Google Scholar
  13. 13.
    Alexiou, C., Arnold, W., Klein, R.J., Parak, F.G., Hulin, P., Bergemann, C., Erhardt, W., Wagenpfeil, S., Luebbe, A.S.: Locoregional cancer treatment with magnetic drug targeting. Cancer Res. 60(23), 6641–6648 (2000)Google Scholar
  14. 14.
    Jurgons, R., Seliger, C., Hilpert, A., Trahms, L., Odenbach, S., Alexiou, C.: Drug loaded magnetic nanoparticles for cancer therapy. J. Phys. Condens. Matter 18(38), S2893 (2006).  https://doi.org/10.1088/0953-8984/18/38/S24 CrossRefGoogle Scholar
  15. 15.
    Hiergeist, R., Andrä, W., Buske, N., Hergt, R., Hilger, I., Richter, U., Kaiser, W.: Application of magnetite ferrofluids for hyperthermia. J. Magn. Magn. Mater. 201(1–3), 420–422 (1999).  https://doi.org/10.1016/S0304-8853(99)00145-6 CrossRefGoogle Scholar
  16. 16.
    Raj, K., Moskowitz, R.: Commercial applications of ferrofluids. J. Magn. Magn. Mater. 85(1–3), 233–245 (1990).  https://doi.org/10.1016/0304-8853(90)90058-X CrossRefGoogle Scholar
  17. 17.
    Odenbach, S. (ed.): Ferrofluids: Magnetically Controllable Fluids and Their Applications, vol. 594. Springer, Berlin (2008)Google Scholar
  18. 18.
    Odenbach, S. (ed.): Colloidal Magnetic Fluids: Basics, Development and Application of Ferrofluids, vol. 763. Springer, Berlin (2009)Google Scholar
  19. 19.
    Odenbach, S., Störk, H.: Shear dependence of field-induced contributions to the viscosity of magnetic fluids at low shear rates. J. Magn. Magn. Mater. 183(1–2), 188–194 (1998).  https://doi.org/10.1016/S0304-8853(97)01051-2 CrossRefGoogle Scholar
  20. 20.
    Pop, L.M., Odenbach, S.: Investigation of the microscopic reason for the magnetoviscous effect in ferrofluids studied by small angle neutron scattering. J. Phys. Condens. Matter 18(38), 2785 (2006).  https://doi.org/10.1088/0953-8984/18/38/S17 CrossRefGoogle Scholar
  21. 21.
    Zubarev, A.Y., Odenbach, S., Fleischer, J.: Rheological properties of dense ferrofluids. Effect of chain-like aggregates. J. Magn. Magn. Mater. 252, 241–243 (2002).  https://doi.org/10.1016/S0304-8853(02)00674-1 CrossRefGoogle Scholar
  22. 22.
    Filipcsei, G., Csetneki, I., Szilágyi, A., Zrínyi, M.: Magnetic field-responsive smart polymer composites. In: Oligomers-Polymer Composites-Molecular Imprinting, pp. 137–189. Springer, Berlin.  https://doi.org/10.1007/12_2006_104 (2007)
  23. 23.
    Jolly, M.R., Carlson, J.D., Muñoz, B.C., Bullions, T.A.: The magnetoviscoelastic response of elastomer composites consisting of ferrous particles embedded in a polymer matrix. J. Intell. Mater. Syst. Struct. 7(6), 613–622 (1996).  https://doi.org/10.1177/1045389X9600700601 CrossRefGoogle Scholar
  24. 24.
    Böse, H.: Viscoelastic properties of silicone-based magnetorheological elastomers. Int. J. Mod. Phys. B 21(28n29), 4790–4797 (2007).  https://doi.org/10.1142/S0217979207045670 CrossRefGoogle Scholar
  25. 25.
    Stepanov, G.V., Abramchuk, S.S., Grishin, D.A., Nikitin, L.V., Kramarenko, E.Y., Khokhlov, A.R.: Effect of a homogeneous magnetic field on the viscoelastic behavior of magnetic elastomers. Polymer 48(2), 488–495 (2007).  https://doi.org/10.1016/j.polymer.2006.11.044 CrossRefGoogle Scholar
  26. 26.
    Stepanov, G.V., Borin, D.Y., Raikher, Y.L., Melenev, P.V., Perov, N.S.: Motion of ferroparticles inside the polymeric matrix in magnetoactive elastomers. J. Phys. Condens. Matter 20(20), 204121 (2008).  https://doi.org/10.1088/0953-8984/20/20/204121 CrossRefGoogle Scholar
  27. 27.
    Stepanov, G., Borin, D., Odenbach, S.: Magnetorheological effect of magneto-active elastomers containing large particles. J. Phys. Conf. Ser. 149(1), 012098 (2009).  https://doi.org/10.1088/1742-6596/149/1/012098 CrossRefGoogle Scholar
  28. 28.
    Schümann, M., Borin, D.Y., Huang, S., Auernhammer, G.K., Müller, R., Odenbach, S.: A characterisation of the magnetically induced movement of NdFeB-particles in magnetorheological elastomers. Smart Mater. Struct. 26(9), 095018 (2017).  https://doi.org/10.1088/1361-665X/aa788a CrossRefGoogle Scholar
  29. 29.
    Ginder, JM., Clark, SM., Schlotter, WF., Nichols, ME.: Magnetostricttve phenomena in magnetorheological elastomers. In: Electrorheological Fluids and Magnetorheological Suspensions, pp. 472–478.  https://doi.org/10.1142/9789812777546_0070 (2002)
  30. 30.
    Guan, X., Dong, X., Ou, J.: Magnetostrictive effect of magnetorheological elastomer. J. Magn. Magn. Mater. 320(3–4), 158–163 (2008).  https://doi.org/10.1016/j.jmmm.2007.05.043 CrossRefGoogle Scholar
  31. 31.
    Zimmermann, K., Naletova, V.A., Zeidis, I., Turkov, V.A., Kolev, E., Lukashevich, M.V., Stepanov, G.V.: A deformable magnetizable worm in a magnetic field—a prototype of a mobile crawling robot. J. Magn. Magn. Mater. 311(1), 450–453 (2007).  https://doi.org/10.1016/j.jmmm.2006.11.153 CrossRefGoogle Scholar
  32. 32.
    Boczkowska, A., Awietjan, S.F., Wroblewski, R.: Microstructure-property relationships of urethane magnetorheological elastomers. Smart Mater. Struct. 16(5), 1924 (2007).  https://doi.org/10.1088/0964-1726/16/5/049 CrossRefGoogle Scholar
  33. 33.
    Kallio, M., Lindroos, T., Aalto, S., Järvinen, E., Kärnä, T., Meinander, T.: Dynamic compression testing of a tunable spring element consisting of a magnetorheological elastomer. Smart Mater. Struct. 16(2), 506 (2007).  https://doi.org/10.1088/0964-1726/16/2/032 CrossRefGoogle Scholar
  34. 34.
    Balasoiu, M., Lebedev, V.T., Orlova, D.N., Bica, I., Raikher, Y.L.: SANS investigation of a ferrofluid based silicone elastomer microstructure. J. Phys. Conf. Ser. 351(1), 012014 (2012).  https://doi.org/10.1088/1742-6596/351/1/012014 CrossRefGoogle Scholar
  35. 35.
    Günther, D., Borin, D.Y., Günther, S., Odenbach, S.: X-ray micro-tomographic characterization of field-structured magnetorheological elastomers. Smart Mater. Struct. 21(1), 015005 (2011).  https://doi.org/10.1088/0964-1726/21/1/015005 CrossRefGoogle Scholar
  36. 36.
    Borbáth, T., Günther, S., Borin, D.Y., Gundermann, T., Odenbach, S.: X\(\upmu \)CT analysis of magnetic field-induced phase transitions in magnetorheological elastomers. Smart Mater. Struct. 21(10), 105018 (2012).  https://doi.org/10.1088/0964-1726/21/10/105018 CrossRefGoogle Scholar
  37. 37.
    Borin, D., Günther, D., Hintze, C., Heinrich, G., Odenbach, S.: The level of cross-linking and the structure of anisotropic magnetorheological elastomers. J. Magn. Magn. Mater. 324(21), 3452–3454 (2012).  https://doi.org/10.1016/j.jmmm.2012.02.063 CrossRefGoogle Scholar
  38. 38.
    Gundermann, T., Odenbach, S.: Investigation of the motion of particles in magnetorheological elastomers by X-\(\upmu \)CT. Smart Mater. Struct. 23(10), 105013 (2014).  https://doi.org/10.1088/0964-1726/23/10/105013 CrossRefGoogle Scholar
  39. 39.
    Gundermann, T., Cremer, P., Löwen, H., Menzel, A.M., Odenbach, S.: Statistical analysis of magnetically soft particles in magnetorheological elastomers. Smart Mater. Struct. 26(4), 045012 (2017).  https://doi.org/10.1088/1361-665X/aa5f96 CrossRefGoogle Scholar
  40. 40.
    Schümann, M., Odenbach, S.: In-situ observation of the particle microstructure of magnetorheological elastomers in presence of mechanical strain and magnetic fields. J. Magn. Magn. Mater. 441, 88–92 (2017).  https://doi.org/10.1016/j.jmmm.2017.05.024 CrossRefGoogle Scholar
  41. 41.
    Schümann, M., Morich, J., Kaufhold, T., Böhm, V., Zimmermann, K., Odenbach, S.: A mechanical characterisation on multiple timescales of electroconductive magnetorheological elastomers. J. Magn. Magn. Mater. 453, 198–205 (2018).  https://doi.org/10.1016/j.jmmm.2018.01.029 CrossRefGoogle Scholar
  42. 42.
    Radon, J.: Über die Bestimmung von Funktionen durch ihre Integralwerte längs gewisse Mannigfaltigheiten, p. 69. Ber. Verh. Sachs. Akad. Wiss. Math Phys Klass, Leipzig (1917)Google Scholar
  43. 43.
    Kalender, W.A.: Computed Tomography: Fundamentals, System Technology, Image Quality, Applications, vol. 220. Wiley-VCH, New York (2000)zbMATHGoogle Scholar
  44. 44.
    Buzug, T.M.: Computed Tomography: From Photon Statistics to Modern Cone-Beam CT. Springer, berlin (2008)Google Scholar
  45. 45.
    Tarama, M., Cremer, P., Borin, D.Y., Odenbach, S., Löwen, H., Menzel, A.M.: Tunable dynamic response of magnetic gels: impact of structural properties and magnetic fields. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 90(4), 042311 (2014).  https://doi.org/10.1103/PhysRevE.90.042311 CrossRefGoogle Scholar
  46. 46.
    Pessot, G., Cremer, P., Borin, D.Y., Odenbach, S., Löwen, H., Menzel, A.M.: Structural control of elastic moduli in ferrogels and the importance of nonaffine deformations. J. Chem. Phys. 141(12), 124 (2014).  https://doi.org/10.1063/1.4896147 CrossRefGoogle Scholar
  47. 47.
    Pessot, G., Schümann, M., Gundermann, T., Odenbach, S., Löwen, H., Menzel, A.M.: Tunable dynamic moduli of magnetic elastomers: from characterization by X-ray micro-computed tomography to mesoscopic modeling. J. Phys. Condens. Matter 30(12), 125101 (2018).  https://doi.org/10.1088/1361-648X/aaaeaa CrossRefGoogle Scholar
  48. 48.
    Spieler, C., Kästner, M., Goldmann, J., Brummund, J., Ulbricht, V.: XFEM modeling and homogenization of magnetoactive composites. Acta Mech. 224(11), 2453–2469 (2013).  https://doi.org/10.1007/s00707-013-0948-5 MathSciNetCrossRefzbMATHGoogle Scholar
  49. 49.
    Metsch, P., Kalina, K.A., Spieler, C., Kästner, M.: A numerical study on magnetostrictive phenomena in magnetorheological elastomers. Comput. Mater. Sci. 124, 364–374 (2016).  https://doi.org/10.1016/j.commatsci.2016.08.012 CrossRefGoogle Scholar
  50. 50.
    Kalina, K.A., Metsch, P., Kästner, M.: Microscale modeling and simulation of magnetorheological elastomers at finite strains: a study on the influence of mechanical preloads. Int. J. Solids Struct. 102, 286–296 (2016).  https://doi.org/10.1016/j.ijsolstr.2016.10.019 CrossRefGoogle Scholar
  51. 51.
    Kalina, K.A., Brummund, J., Metsch, P., Kästner, K., Borin, D.Y., Linke, J.M., Odenbach, S.: Modeling of magnetic hystereses in soft MREs filled with NdFeB particles. Smart Mater. Struct. 26(10), 990 (2017).  https://doi.org/10.1088/1361-665X/aa7f81 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Chair of Magnetofluiddynamics, Measuring and Automation TechnologyTU DresdenDresdenGermany

Personalised recommendations