Advertisement

Rheological properties of magnetic biogels

  • A. Zubarev
  • A. B. Bonhome-Espinosa
  • M. Alaminos
  • J. D. G. Duran
  • M. T. Lopez-Lopez
Original
  • 54 Downloads

Abstract

We report an experimental and theoretical study of the rheological properties of magnetic biogels consisting of fibrin polymer networks with embedded magnetite nanoparticles, swollen by aqueous solutions. We studied two types of magnetic biogels, differenced by the presence or absence of an applied magnetic field during the initial steps of cross-linking. The experiments demonstrated very strong dependence of the elastic modulus of the magnetic biogels on the concentration of the magnetic particles. We finally developed some theoretical models that explain the observed strong concentration effects.

Keywords

Fibrin Polymer Magnetic gels Structural transformations Elastic modulus 

Notes

Acknowledgements

This study was supported by projects FIS2013-41821-R (Plan Nacional de Investigación Científica, Desarrollo e Innovación Tecnológica, MINECO, Spain, co-funded by ERDF, European Union) and FIS2017-85954-R (Ministerio de Economía, Industria y Competitividad, MINECO, and Agencia Estatal de Investigación, AEI, Spain, co-funded by Fondo Europeo de Desarrollo Regional, FEDER, European Union). A.Z. is grateful to the program of the Ministry of Education and Science of the Russian Federation, projects 02.A03.21.0006, 3.1438.2017/4.6, and 3.5214.2017/6.7, as well as to the Russian Fund of Basic Researches, project 18-08-00178.

Compliance with ethical standards

Ethical statement

This study was approved by the Ethics Committee of the University of Granada, Granada, Spain.

References

  1. 1.
    Bose, H., Rabindranath, R., Ehrlich, J.: Soft magnetorheological elastomers as new actuators for valves. J. Intell. Mater. Syst. Struct. 23(9), 989–994 (2012)CrossRefGoogle Scholar
  2. 2.
    Filipcsei, G., Csetneki, I., Szilagyi, A., Zrınyi, M.: Magnetic field-responsive smart polymer composites. In: Advances in Polymer Science, vol. 206. Springer, Berlin Heidelberg, pp. 137–189 (2007)Google Scholar
  3. 3.
    Boczkowska, A., Awietjan, S.: Tuning active magnetorheological elastomers for damping applications. Mater. Sci. Forum 636–637, 766–771 (2010)CrossRefGoogle Scholar
  4. 4.
    Dyke, S., Spencer, B., Sain, M., Carlson, J.: Modeling and control of magnetorheological dampers for seismic response reduction. Smart Mater. Struct. 5(5), 565–575 (1996)CrossRefGoogle Scholar
  5. 5.
    Occhiuzzi, A., Spizzuoco, M., Serino, G.: Experimental analysis of magnetorheological dampers for structural control. Smart Mater. Struct. 12, 703–711 (2003)CrossRefGoogle Scholar
  6. 6.
    Carmona, F., Mouney, C.: Temperature-dependent resistivity and conduction mechanism in carbon particle-filled polymers. J. Mater. Sci. 27(5), 1322–1326 (1992)CrossRefGoogle Scholar
  7. 7.
    Feller, J., Linossier, I., Grohens, Y.: Conductive polymer composites: comparative study of poly(ester)-short carbon fibres and poly(epoxy)-short carbon fibres mechanical and electrical properties. Mater. Lett. 57(1), 64–71 (2002)CrossRefGoogle Scholar
  8. 8.
    Bañobre-López, M., Piñeiro-Redondo, Y., de Santis, R., Gloria, A., Ambrosio, L., Tampieri, A.: Poly(caprolactone) based magnetic scaffolds for bone tissue engineering. J. Appl. Phys. 109(7), 07B313 (2011)CrossRefGoogle Scholar
  9. 9.
    Bock, N., Riminucci, A., Dionigi, C., Russo, A., Tampieri, A., Landi, E.: A novel route in bone tissue engineering: magnetic biomimetic scaffolds. Acta Biomater. 6(3), 786–796 (2010)CrossRefGoogle Scholar
  10. 10.
    Lin, C., Metters, A.: Hydrogels in controlled release formulations: network design and mathematical modeling. Adv. Drug Deliv. Rev. 58(12–13), 1379–1408 (2006)CrossRefGoogle Scholar
  11. 11.
    Langer, R.: New methods of drug delivery. Science 249(4976), 1527–1533 (1990)CrossRefGoogle Scholar
  12. 12.
    Mitragotri, S., Lahann, J.: Physical approaches to biomaterial design. Nat. Mater. 8, 15–21 (2009)CrossRefGoogle Scholar
  13. 13.
    Choi, N.W., Cabodi, M., Held, B., Gleghorn, J.P., Bonassar, L.J.: Microfluidic scaffolds for tissue engineering. Nat. Mater. 6, 908–915 (2007)CrossRefGoogle Scholar
  14. 14.
    Kurlyandskaya, G.V., Fernández, E., Safronov, A.P., Svalov, A.V., Beketov, I., Beitia, A.B., García-Arribas, A., Blyakhman, F.A.: Giant magnetoimpedance biosensor for ferrogel detection: model system to evaluate properties of natural tissue. Appl. Phys. Lett. 106, 193702 (2015)CrossRefGoogle Scholar
  15. 15.
    Thevenot, J., Oliveira, H., Sandre, O., Lecommandoux, S.: Magnetic responsive polymer composite materials. Chem. Soc. Rev. 42(17), 7099–7116 (2013)CrossRefGoogle Scholar
  16. 16.
    Hunt, N.C., Grover, L.M.: Cell encapsulation using biopolymer gels for regenerative medicine. Biotechnol. Lett. 32(6), 733–742 (2010)CrossRefGoogle Scholar
  17. 17.
    Das, B., Mandal, M., Upadhyay, A., Chattopadhyay, P., Karak, N.: Bio-based hyperbranched polyurethane/Fe\(_{3}\)O\(_{4}\) nanocomposites: smart antibacterial biomaterials for biomedical devices and implants. Biomed. Mater. 8(3), 035003 (2013)Google Scholar
  18. 18.
    de Santis, R., Gloria, A., Russo, T., d’Amora, U., Zeppetelli, S., Dionigi, C.: A basic approach toward the development of nanocomposite magnetic scaffolds for advanced bone tissue engineering. J. Appl. Polym. Sci. 122(6), 3599–3605 (2011)CrossRefGoogle Scholar
  19. 19.
    Gloria, A., Russo, R., d’Amora, U., Zeppetelli, S., d’Alessandro, T., Sandri, M., et al.: Magnetic poly(\(\varepsilon \)-caprolactone)/iron-doped hydroxyapatite nanocomposite substrates for advanced bone tissue engineering. J. R. Soc Interface 10(80), 20120833 (2013)Google Scholar
  20. 20.
    Hu, S.H., Liu, T.Y., Tsai, C.H., Chen, S.Y.: Preparation and characterization of magnetic ferroscaffolds for tissue engineering. J. Magn. Magn. Mater. 310(2), 2871–2873 (2007)CrossRefGoogle Scholar
  21. 21.
    Hu, H., Jiang, W., Lan, F., Zeng, X., Ma, S., Wu, Y.: Synergic effect of magnetic nanoparticles on the electrospun aligned superparamagnetic nanofibers as a potential tissue engineering scaffold. RSC Adv. 3, 879–886 (2013)CrossRefGoogle Scholar
  22. 22.
    Lai, K., Jiang, W., Tang, J.Z., Wu, Y., He, B., Wang, G., et al.: Superparamagnetic nano-composite scaffolds for promoting bone cell proliferation and defect reparation without a magnetic field. RSC Adv. 2, 13007–13017 (2012)CrossRefGoogle Scholar
  23. 23.
    Li, Y., Huang, G., Zhang, X., Li, B., Chen, Y., Lu, T.: Magnetic hydrogels and their potential biomedical applications. Adv. Funct. Mater. 23(6), 660–672 (2013)CrossRefGoogle Scholar
  24. 24.
    Panseri, S., Cunha, C., Alessandro, T., Sandri, M., Giavaresi, G., Marcacci, M.: Intrinsically superparamagnetic Fe-hydroxyapatite nanoparticles positively influence osteoblast-like cell behaviour. J. Nanobiotechnol. 10, 32 (2012)CrossRefGoogle Scholar
  25. 25.
    Skaat, H., Ziv-Polat, O., Shahar, A., Last, D., Mardor, Y., Margel, S.: Magnetic scaffolds enriched with bioactive nanoparticles for tissue engineering. Adv. Healthc Mater. 1(2), 168–171 (2012)CrossRefGoogle Scholar
  26. 26.
    Tampieri, A., Landi, E., Valentini, F., Sandri, M., d’Alessandro, T., Dediu, V., et al.: A conceptually new type of bio-hybrid scaffold for bone regeneration. Nanotechnology 22(1), 015104 (2011)CrossRefGoogle Scholar
  27. 27.
    Tampieri, A., d’Alessandro, T., Sandri, M., Sprio, S., Landi, E., Bertinetti, L.: Intrinsic magnetism and hyperthermia in bioactive Fe-doped hydroxyapatite. Acta Biomater. 8(2), 843–851 (2012)CrossRefGoogle Scholar
  28. 28.
    Zeng, X.B., Hu, H., Xie, L.Q., Lan, F., Jiang, W., Wu, Y.: Magnetic responsive hydroxyapatite composite scaffolds construction for bone defect reparation. Int. J. Nanomed. 7, 3365–3378 (2012)CrossRefGoogle Scholar
  29. 29.
    Zeng, X.B., Hu, H., Xie, L.Q., Lan, F., Wu, Y., Gu, Z.W.: Preparation and properties of supermagnetic calcium phosphate composite scaffold. J. Inorg. Mater. 28(1), 79–84 (2013)CrossRefGoogle Scholar
  30. 30.
    Zhu, Y., Shang, F., Li, B., Dong, Y., Liu, Y., Lohe, M.R.: Magnetic mesoporous bioactive glass scaffolds: preparation, physicochemistry and biological properties. J. Mater. Chem. B 1(9), 1279–1288 (2013)CrossRefGoogle Scholar
  31. 31.
    Ziv-Polat, O., Skaat, H., Shahar, A., Margel, S.: Novel magnetic fibrin hydrogel scaffolds containing thrombin and growth factors conjugated iron oxide nanoparticles for tissue engineering. Int. J. Nanomed. 7, 1259–1274 (2012)CrossRefGoogle Scholar
  32. 32.
    Singh, R.K., Patel, K.D., Lee, J.H., Lee, E.J., Kim, J.H., Kim, T.H., et al.: Potential of magnetic nanofiber scaffolds with mechanical and biological properties applicable for bone regeneration. PLOS ONE 9, e91584 (2014)CrossRefGoogle Scholar
  33. 33.
    Lopez-Lopez, M.T., Scionti, G., Oliveira, A.C., Duran, J.D.G., Campos, A., Alaminos, M., Rodriges, I.A.: Generation and characterization of novel magnetic field-responsive biomaterials. PLOS ONE 10(7), e0133878 (2015)CrossRefGoogle Scholar
  34. 34.
    Nicodemus, G.D., Bryant, S.J.: Cell encapsulation in biodegradable hydrogels for tissue engineering applications. Tissue Eng. Part B 14(2), 149–165 (2008)CrossRefGoogle Scholar
  35. 35.
    Ladet, S., David, L., Domard, A.: Multi-membrane hydrogels. Nature 452, 76–79 (2008)CrossRefGoogle Scholar
  36. 36.
    Caló, E., Khutoryanskiy, V.V.: Biomedical applications of hydrogels: a review of patents and commercial products. Eur. Polym. J. 65, 252–267 (2015)CrossRefGoogle Scholar
  37. 37.
    Sharmin, F., et al.: Injectable hydrogels for regenerative engineering, pp. 1–32. Imperial College Press, London (2016)CrossRefGoogle Scholar
  38. 38.
    Banobre-Lopez, M., Pineiro-Redondo, Y., de Santis, R., Gloria, A., Ambrosio, L., Tampieri, A., Dediu, V., Rivas, J.: Poly(caprolactone) based magnetic scaffolds for bone tissue engineering. J. Appl. Phys. 109, 07B313 (2011)CrossRefGoogle Scholar
  39. 39.
    Yun, H.M., Ahn, S.J., Park, K.R., Kim, M.J., Kim, J.J., Jinc, G.Z., Kim, H.W., Kim, E.C.: Magnetic nanocomposite scaffolds combined with static magnetic field in the stimulation of osteoblastic differentiation and bone formation. Biomaterials 85, 88–98 (2016)CrossRefGoogle Scholar
  40. 40.
    Rodriguez-Arco, L., Rodriguez, I.A., Carriel, V., Bonhome-Espinosa, A.B., Campos, F., Kuzhir, P., Duran, J.D.G., Lopez-Lopez, M.T.: Biocompatible magnetic core-shell nanocomposites for engineered magnetic tissues. Nanoscale 8(15), 8138–8150 (2016)CrossRefGoogle Scholar
  41. 41.
    Lopez-Lopez, M.T., Rodriguez, I.A., Rodriguez-Arco, L., Carriel, V., Bonhome-Espinosa, A.B., Campos, F., Zubarev, A., Duran, J.D.G.: Synthesis, characterization and in vivo evaluation of biocompatible ferrogels. J. Magn. Magn. Mater. 431, 110–114 (2017)CrossRefGoogle Scholar
  42. 42.
    Bonhome-Espinosa, A.B., Campos, F., Rodriguez, I.A., Carriel, V., Marins, J.A., Zubarev, A., Duran, J.D.G., Lopez-Lopez, M.T.: Effect of particle concentration on the microstructural and macromechanical properties of biocompatible magnetic hydrogels. Soft Matter 13, 2928–2941 (2017)CrossRefGoogle Scholar
  43. 43.
    Scionti, G., Moral, M., Toledano, M., Osorio, R., Durán, J.D.G., Alaminos, M., Campos, A., López-López, M.T.: Effect of the hydration on the biomechanical properties in a fibrin–agarose tissue-like model. J. Biomed. Mater. Res. Part A 102A, 2573–2582 (2014)CrossRefGoogle Scholar
  44. 44.
    Alaminos, M., Sanchez-Quevedo, M.C., Munoz-Avila, J.I., Serrano, D., Medialdea, S., Carreras, I.: Construction of a complete rabbit cornea substitute using a fibrin–agarose scaffold. Invest. Ophthalmol. Vis. Sci. 47, 3311–3317 (2006)CrossRefGoogle Scholar
  45. 45.
    Bychkova, A.V., Sorokina, O.N., Kovarski, A.L., Shapiro, A.B., Leonova, V.B., Rozenfeld, M.A.: Interaction of fibrinogen with magnetite nanoparticles. Biophysics 55(4), 544–549 (2010)CrossRefGoogle Scholar
  46. 46.
    Cote, H.C.F., Lord, S.T., Pratt, K.P.: \(\gamma \)-Chain dysfibrinogenemias: molecular structure-function relationships of naturally occurring mutations in the \(\gamma \)-chain of human fibrinogen. Blood 92(7), 2195–2212 (1998)Google Scholar
  47. 47.
    Zeliszewska, P., Bratek-Skicki, A., Adamczyk, Z., Ciesla, M.: Human fibrinogen adsorption on positively charged latex particles. Langmuir 30(37), 11165–11174 (2014)CrossRefGoogle Scholar
  48. 48.
    Pitaevskii, L.P., Lifshits, E.M.: Physical Kinetics. Butterworth-Heinemann, Oxford (1999)Google Scholar
  49. 49.
    Rubistein, M., Colby, R.H.: Polymer Physics. Oxford University, New York (2003)Google Scholar
  50. 50.
    Grosberg, A., Khokhlov, A.: Statistical Physics of Macromolecules. Springer, Berlin (1994)Google Scholar
  51. 51.
    Christensen, R.M.: Mechanics of Composite Materials. Krieger Publishing Company, Malabar (1991)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • A. Zubarev
    • 1
    • 2
  • A. B. Bonhome-Espinosa
    • 3
    • 4
  • M. Alaminos
    • 4
    • 5
  • J. D. G. Duran
    • 3
    • 4
  • M. T. Lopez-Lopez
    • 3
    • 4
  1. 1.Department of Theoretical and Mathematical PhysicsUral Federal UniversityEkaterinburgRussia
  2. 2.M.N. Mikheev Institute of Metal Physics, Ural BranchRussian Academy of SciencesEkaterinburgRussia
  3. 3.Department of Applied PhysicsUniversity of GranadaGranadaSpain
  4. 4.Instituto de Investigación Biosanitaria ibs.GRANADAGranadaSpain
  5. 5.Department of Histology (Tissue Engineering Group)University of GranadaGranadaSpain

Personalised recommendations