Archive of Applied Mechanics

, Volume 88, Issue 12, pp 2199–2219 | Cite as

On the dynamics of a vibro-driven capsule system

  • Pengcheng LiuEmail author
  • Hongnian Yu
  • Shuang Cang


This paper studies the nonlinear dynamics of a two-degree-of-freedom vibro-driven capsule system. The capsule is capable of rectilinear locomotion benefiting from the periodic motion of the driving pendulum and the sliding friction between the capsule and the environmental surface in contact. Primary attentions are devoted to the dynamic analysis of the motion and stick-slip effect of the capsule system. Following a modal decoupling procedure, a profile of periodic responses is obtained. Subsequently, this work emphasizes the influences of elasticity and viscosity on the dynamic responses in a mobile system, whose implicit qualitative properties are identified using bifurcation diagrams and Poincaré sections. A locomotion-performance index is proposed and evaluated to identify the optimal viscoelastic parameters. It is found that the dynamic behaviour of the capsule system is mainly periodic, and the desired forward motion of the capsule can be achieved through optimal selection of the elasticity and viscosity coefficients. In view of the stick-slip motion, the critical equilibrium and its dynamic behaviours, different regions of oscillations of the driving pendulum are identified, with the attention focusing on the critical region where linearities are absent and nonlinearities dominate the dynamic behaviour of the pendulum. The conditions for stick-slip motions to achieve a pure forward motion are investigated. The proposed approach can be adopted in designing and selecting of suitable operating parameters for vibro-driven or joint-actuated mechanical systems.


Dynamic analysis Vibration-driven Viscoelasticity Stick-slip motion Capsule systems 



  1. 1.
    Böhm, V., Kaufhold, T., Zeidis, I., Zimmermann, K.: Dynamic analysis of a spherical mobile robot based on a tensegrity structure with two curved compressed members. Arch. Appl. Mech. 87, 853–864 (2017). CrossRefGoogle Scholar
  2. 2.
    Fang, H.-B., Xu, J.: Controlled motion of a two-module vibration-driven system induced by internal acceleration-controlled masses. Arch. Appl. Mech. 82, 461–477 (2012)CrossRefGoogle Scholar
  3. 3.
    Liu, P., Yu, H., Cang, S.: Geometric analysis-based trajectory planning and control for under actuated capsule systems with viscoelastic property. Trans. Inst. Meas. Control. (2017). CrossRefGoogle Scholar
  4. 4.
    Huda, M.N., Yu, H.: Trajectory tracking control of an underactuated capsubot. Auton. Robots. 39, 183–198 (2015). CrossRefGoogle Scholar
  5. 5.
    Liu, Y., Wiercigroch, M., Pavlovskaia, E., Yu, H.: Modelling of a vibro-impact capsule system. Int. J. Mech. Sci. 66, 2–11 (2013). CrossRefGoogle Scholar
  6. 6.
    Chernous’ko, F.L.: Analysis and optimization of the rectilinear motion of a two-body system. J. Appl. Math. Mech. 75, 493–500 (2011)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Liu, P., Yu, H., Cang, S.: Modelling and control of an elastically joint-actuated cart-pole underactuated system. In: 2014 20th International Conference on Automation and Computing (ICAC), IEEE, pp. 26–31 (2014)Google Scholar
  8. 8.
    Liu, P., Yu, H., Cang, S.: On periodically Pendulum-diven Systems for Underactuated Locomotion: A Viscoelastic Jointed Model. Presented at the September (2015)Google Scholar
  9. 9.
    Liu, P., Yu, H., Cang, S.: Modelling and dynamic analysis of underactuated capsule systems with friction-induced hysteresis. In: 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), IEEE, pp. 549–554 (2016)Google Scholar
  10. 10.
    Huda, M.N., Yu, H.-N., Wane, S.O.: Self-contained capsubot propulsion mechanism. Int. J. Autom. Comput. 8, 348 (2011)CrossRefGoogle Scholar
  11. 11.
    Li, H., Furuta, K., Chernousko, F.L.: Motion generation of the capsubot using internal force and static friction. In: 2006 45th IEEE Conference on Decision and Control, pp. 6575–6580 (2006)Google Scholar
  12. 12.
    Liu, P., Yu, H., Cang, S., Vladareanu, L.: Robot-assisted smart firefighting and interdisciplinary perspectives. In: 2016 22nd International Conference on Automation and Computing (ICAC), pp. 395–401 (2016)Google Scholar
  13. 13.
    Ding, W.-C., Xie, J.H., Sun, Q.G.: Interaction of Hopf and period doubling bifurcations of a vibro-impact system. J. Sound Vib. 275, 27–45 (2004)CrossRefGoogle Scholar
  14. 14.
    Luo, G.-W., Xie, J.-H.: Hopf bifurcation of a two-degree-of-freedom vibro-impact system. J. Sound Vib. 213, 391–408 (1998)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Chávez, J.P., Pavlovskaia, E., Wiercigroch, M.: Bifurcation analysis of a piecewise-linear impact oscillator with drift. Nonlinear Dyn. 77, 213–227 (2014)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Guo, Y., Luo, A.C.: Parametric analysis of bifurcation and chaos in a periodically driven horizontal impact pair. Int. J. Bifurc. Chaos 22, 1250268 (2012)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Perchikov, N., Gendelman, O.V.: Dynamics and stability of a discrete breather in a harmonically excited chain with vibro-impact on-site potential. Phys. Nonlinear Phenom. 292, 8–28 (2015)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Yue, Y., Xie, J.: Neimark–Sacker-pitchfork bifurcation of the symmetric period fixed point of the Poincaré map in a three-degree-of-freedom vibro-impact system. Int. J. Nonlinear Mech. 48, 51–58 (2013)CrossRefGoogle Scholar
  19. 19.
    Nayfeh, A.H., Balachandran, B.: Modal interactions in dynamical and structural systems. Appl. Mech. Rev. 42, S175–S201 (1989). MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Nayfeh, A.H., Balachandran, B.: Applied Nonlinear Dynamics: Analytical, Computational and Experimental Methods. Wiley, New York (2008)zbMATHGoogle Scholar
  21. 21.
    Luo, G.W., Zhu, X.F., Shi, Y.Q.: Dynamics of a two-degree-of freedom periodically-forced system with a rigid stop: diversity and evolution of periodic-impact motions. J. Sound Vib. 334, 338–362 (2015). CrossRefGoogle Scholar
  22. 22.
    Batako, A.D.L., Lalor, M.J., Piiroinen, P.T.: Numerical bifurcation analysis of a friction-driven vibro-impact system. J. Sound Vib. 308, 392–404 (2007). CrossRefGoogle Scholar
  23. 23.
    Pavlovskaia, E., Hendry, D.C., Wiercigroch, M.: Modelling of high frequency vibro-impact drilling. Int. J. Mech. Sci. 91, 110–119 (2015). CrossRefGoogle Scholar
  24. 24.
    Nagaya, K., Kurusu, A., Ikai, S., Shitani, Y.: Vibration control of a structure by using a tunable absorber and an optimal vibration absorber under auto-tuning control. J. Sound Vib. 228, 773–792 (1999). CrossRefGoogle Scholar
  25. 25.
    KęCIK, K., Mitura, A., WARMIńSKI, J.: Efficiency analysis of an autoparametric pendulum vibration absorber. Eksploat. Niezawodn. 15, 221–224 (2013)Google Scholar
  26. 26.
    Sun, W., Li, J., Zhao, Y., Gao, H.: Vibration control for active seat suspension systems via dynamic output feedback with limited frequency characteristic. Mechatronics 21, 250–260 (2011)CrossRefGoogle Scholar
  27. 27.
    Zhang, P., Ren, L., Li, H., Jia, Z., Jiang, T.: Control of wind-induced vibration of transmission tower-line system by using a spring pendulum. Math. Probl. Eng. 2015, 1–10 (2015)Google Scholar
  28. 28.
    El-Khoury, O., Adeli, H.: Recent advances on vibration control of structures under dynamic loading. Arch. Comput. Methods Eng. 20, 353–360 (2013)CrossRefGoogle Scholar
  29. 29.
    Tsampardoukas, G., Stammers, C.W., Guglielmino, E.: Hybrid balance control of a magnetorheological truck suspension. J. Sound Vib. 317, 514–536 (2008). CrossRefGoogle Scholar
  30. 30.
    Insperger, T., Milton, J., Stépán, G.: Acceleration feedback improves balancing against reflex delay. J. R. Soc. Interface 10, 20120763 (2013)CrossRefGoogle Scholar
  31. 31.
    Yang, B.D., Chu, M.L., Menq, C.H.: Stick-slip-separation analysis and non-linear stiffness and damping characterization of friction contacts having variable normal load. J. Sound Vib. 210, 461–481 (1998)CrossRefGoogle Scholar
  32. 32.
    Andreaus, U., Casini, P.: Dynamics of friction oscillators excited by a moving base and/or driving force. J. Sound Vib. 245, 685–699 (2001)CrossRefGoogle Scholar
  33. 33.
    Urbakh, M., Klafter, J., Gourdon, D., Israelachvili, J.: The nonlinear nature of friction. Nature 430, 525–528 (2004)CrossRefGoogle Scholar
  34. 34.
    Luo, A.C., Gegg, B.C.: Stick and non-stick periodic motions in periodically forced oscillators with dry friction. J. Sound Vib. 291, 132–168 (2006)MathSciNetCrossRefGoogle Scholar
  35. 35.
    Olsson, H., Åström, K.J., Canudas de Wit, C., Gäfvert, M., Lischinsky, P.: Friction models and friction compensation. Eur. J. Control. 4, 176–195 (1998). CrossRefzbMATHGoogle Scholar
  36. 36.
    Muskinja, N., Tovornik, B.: Swinging up and stabilization of a real inverted pendulum. IEEE Trans. Ind. Electron. 53, 631–639 (2006)CrossRefGoogle Scholar
  37. 37.
    Olfati-Saber, R.: Nonlinear control of underactuated mechanical systems with application to robotics and aerospace vehicles. Ph.D. Dissertation, Dept. of Electrical Engineering and Computer Science, MIT, aAI0803036 (2000)Google Scholar
  38. 38.
    Von Groll, G., Ewins, D.J.: The harmonic balance method with arc-length continuation in rotor/stator contact problems. J. Sound Vib. 241, 223–233 (2001)CrossRefGoogle Scholar
  39. 39.
    Guyon, E.: Second-order phase transitions: models and analogies. Am. J. Phys. 43, 877–881 (1975)CrossRefGoogle Scholar
  40. 40.
    Landau, L.D.: The Classical Theory of Fields. Elsevier, Amsterdam (2013)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Lincoln Centre for Autonomous SystemsUniversity of LincolnLincolnUK
  2. 2.Faculty of Science and TechnologyBournemouth UniversityPooleUK
  3. 3.Faculty of ManagementBournemouth UniversityPooleUK

Personalised recommendations