Two- and three-dimensional modeling approaches in magneto-mechanics: a quantitative comparison
- 106 Downloads
Abstract
In this contribution, we present a qualitative and quantitative comparison of two- and three-dimensional finite-element simulations for magneto-rheological elastomers. Based on a general continuum formulation of the coupled magneto-mechanical boundary value problem, a microscopic modeling approach is applied. The merit of this strategy is a full resolution of the local magnetic and mechanical fields within the heterogeneous microstructure of magneto-rheological elastomers—it allows to account for systems with high particle-volume fractions and small inter-particle distances. In order to understand basic deformation mechanisms as well as local magneto-mechanical interactions of the spherical inclusions, the differences between simplified two-dimensional and realistic three-dimensional simulations are initially shown for the example of chain-like structures with varying arrangements of the particles. Afterwards, an appropriate scale transition scheme is used to connect the microscopic and macroscopic quantities: Different two- and three-dimensional, ideal and random microstructures are analyzed with regard to their effective magneto-mechanical behavior.
Keywords
Magneto-rheological elastomers Magneto-mechanical coupling Nonlinear finite-element methodNotes
Acknowledgements
The present study is funded by the German Research Foundation, Priority Programmes (SPP) 1681 and 1713: Grants KA 3309/2-3 and KA 3309/5-2. This support is gratefully acknowledged. The computations were performed on a PC-Cluster at the Center for Information Services and High Performance Computing (ZIH) at TU Dresden. The authors thank the ZIH for generous allocations of computer time.
References
- 1.Ahrens, J., Geveci, B., Law, C.: ParaView: an end-user tool for large-data visualization. In: Hansen, C.D., Johnson, C.R. (eds.) Visualization Handbook, pp. 717–731. Butterworth-Heinemann, Burlington (2005)CrossRefGoogle Scholar
- 2.Becker, T., Böhm, V., Vega, J.C., Borin, D.Y., Odenbach, S., Raikher, Y., Stepanov, G., Zimmermann, K.: Studies on the dynamical behavior of magneto-sensitive elastomers in application for magnetic field controlled actuator and sensor systems. Arch. Appl. Mech., submitted (2018)Google Scholar
- 3.Biller, A.M., Stolbov, O.V., Raikher, Y.L.: Modeling of particle interactions in magnetorheological elastomers. J. Appl. Phys. 116(11), 114904 (2014)CrossRefGoogle Scholar
- 4.Bíró, O., Preis, K.: On the use of the magnetic vector potential in the finite element analysis of three-dimensional eddy currents. IEEE Trans. Magn. 25(4), 3145–3159 (1989)CrossRefGoogle Scholar
- 5.Borin, D., Stepanov, G.V.: Soft magnetoactive elastomers: synthesis and magnetomechanical characterization. Arch. Appl. Mech., submitted (2018)Google Scholar
- 6.Böse, H., Rabindranath, R., Ehrlich, J.: Soft magnetorheological elastomers as new actuators for valves. J. Intell. Mater. Syst. Struct. 23(9), 989–994 (2012)CrossRefGoogle Scholar
- 7.Bustamante, R.: Transversely isotropic nonlinear magneto-active elastomers. Acta Mech. 210(3), 183–214 (2010)CrossRefzbMATHGoogle Scholar
- 8.Carlson, J.D., Jolly, M.R.: MR fluid, foam and elastomer devices. Mechatronics 10(4–5), 555–569 (2000)CrossRefGoogle Scholar
- 9.Chatzigeorgiou, G., Javili, A., Steinmann, P.: Unified magnetomechanical homogenization framework with application to magnetorheological elastomers. Math. Mech. Solids 19(2), 193–211 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
- 10.Ciarlet, P.G.: Three-Dimensional Elasticity, vol. 20. Elsevier, New York (1988)zbMATHGoogle Scholar
- 11.Coleman, B.D., Noll, W.: The thermodynamics of elastic materials with heat conduction and viscosity. Arch. Ration. Mech. Anal. 13, 167–178 (1963). https://doi.org/10.1007/BF01262690 MathSciNetCrossRefzbMATHGoogle Scholar
- 12.Cremer, P., Löwen, H., Menzel, A.M.: Tailoring superelasticity of soft magnetic materials. Appl. Phys. Lett. 107(17), 171903 (2015)CrossRefGoogle Scholar
- 13.Danas, K.: Effective response of classical, auxetic and chiral magnetoelastic materials by use of a new variational principle. J. Mech. Phys. Solids 105, 25–53 (2017)MathSciNetCrossRefGoogle Scholar
- 14.Danas, K., Kankanala, S.V., Triantafyllidis, N.: Experiments and modeling of iron-particle-filled magnetorheological elastomers. J. Mech. Phys. Solids 60(1), 120–138 (2012)CrossRefGoogle Scholar
- 15.de Groot, S.R., Suttorp, L.G.: Foundations of Electrodynamics. North-Holland, Amsterdam (1972)Google Scholar
- 16.Dorfmann, A., Ogden, R.W.: Nonlinear magnetoelastic deformations of elastomers. Acta Mech. 167(1), 13–28 (2004)CrossRefzbMATHGoogle Scholar
- 17.Eringen, A.C., Maugin, G.A.: Electrodynamics of Continua I: Foundations and Solid Media. Springer, New York (1990)CrossRefGoogle Scholar
- 18.Fetzer, J., Haas, M., Kurz, S.: Numerische Berechnung elektromagnetischer Felder, volume 627 of Kontakt & Studium. expert-Verlag, Renningen-Malmsheim (2002)Google Scholar
- 19.Galipeau, E., Ponte Castañeda, P.: The effect of particle shape and distribution on the macroscopic behavior of magnetoelastic composites. Int. J. Solids Struct. 49(1), 1–17 (2012)CrossRefGoogle Scholar
- 20.Galipeau, E., Ponte Castañeda, P.: A finite-strain constitutive model for magnetorheological elastomers: magnetic torques and fiber rotations. J. Mech. Phys. Solids 61(4), 1065–1090 (2013)MathSciNetCrossRefGoogle Scholar
- 21.Galipeau, E., Rudykh, S., deBotton, G., Ponte Castañeda, P.: Magnetoactive elastomers with periodic and random microstructures. Int. J. Solids Struct. 51(18), 3012–3024 (2014)CrossRefGoogle Scholar
- 22.Geuzaine, C., Remacle, J.-F.: Gmsh: A 3-d finite element mesh generator with built-in pre- and post-processing facilities. Int. J. Numer. Meth. Eng. 79(11), 1309–1331 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
- 23.Goshkoderia, A., Rudykh, S.: Stability of magnetoactive composites with periodic microstructures undergoing finite strains in the presence of a magnetic field. Compos. B Eng. 128, 19–29 (2017)CrossRefGoogle Scholar
- 24.Guan, X., Dong, X., Ou, J.: Magnetostrictive effect of magnetorheological elastomer. J. Magn. Magn. Mater. 320(3–4), 158–163 (2008)CrossRefGoogle Scholar
- 25.Haldar, K., Kiefer, B., Menzel, A.: Finite element simulation of rate-dependent magneto-active polymer response. Smart Mater. Struct. 25(10), 104003 (2016)CrossRefGoogle Scholar
- 26.Han, Y., Hong, W., Faidley, L.E.: Field-stiffening effect of magneto-rheological elastomers. Int. J. Solids Struct. 50(14–15), 2281–2288 (2013)CrossRefGoogle Scholar
- 27.Hill, R.: Elastic properties of reinforced solids: some theoretical principles. J. Mech. Phys. Solids 11(5), 357–372 (1963)CrossRefzbMATHGoogle Scholar
- 28.Jackson, J.D.: Klassische Elektrodynamik, 4th edn. Walter de Gruyter, Berlin (2006)CrossRefGoogle Scholar
- 29.Javili, A., Chatzigeorgiou, G., Steinmann, P.: Computational homogenization in magneto-mechanics. Int. J. Solids Struct. 50(25–26), 4197–4216 (2013)CrossRefGoogle Scholar
- 30.Kalina, K.A., Brummund, J., Kästner, M.P.M., Borin, D.Y., Linke, J.M., Odenbach, S.: Modeling of magnetic hystereses in soft mres filled with ndfeb particles. Smart Mater. Struct. 26, 105019–105031 (2017)CrossRefGoogle Scholar
- 31.Kalina, K.A., Metsch, P., Kästner, M.: Microscale modeling and simulation of magnetorheological elastomers at finite strains: a study on the influence of mechanical preloads. Int. J. Solids Struct. 102–103, 286–296 (2016)CrossRefGoogle Scholar
- 32.Kankanala, S.V., Triantafyllidis, N.: On finitely strained magnetorheological elastomers. J. Mech. Phys. Solids 52(12), 2869–2908 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
- 33.Kästner, M., Obst, M., Brummund, J., Thielsch, K., Ulbricht, V.: Inelastic material behavior of polymers–experimental characterization, formulation and implementation of a material model. Mech. Mater. 52, 40–57 (2012)CrossRefzbMATHGoogle Scholar
- 34.Keip, M.-A., Rambausek, M.: A multiscale approach to the computational characterization of magnetorheological elastomers. Int. J. Numer. Methods Eng. 107(4), 338–360 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
- 35.Keip, M.-A., Rambausek, M.: Computational and analytical investigations of shape effects in the experimental characterization of magnetorheological elastomers. Int. J. Solids Struct. 121, 1–20 (2017)CrossRefGoogle Scholar
- 36.Linke, J.M., Borin, D.Y., Odenbach, S.: First-order reversal curve analysis of magnetoactive elastomers. RSC Adv. 6(102), 100407–100416 (2016)CrossRefGoogle Scholar
- 37.Menzel, A.: Mesoscopic modeling of magnetic gels and elastomers on the discrete particle level and links to the macroscale. Arch. Appl. Mech. submitted (2018)Google Scholar
- 38.Metsch, P., Kalina, K.A., Spieler, C., Kästner, M.: A numerical study on magnetostrictive phenomena in magnetorheological elastomers. Comput. Mater. Sci. 124, 364–374 (2016)CrossRefGoogle Scholar
- 39.Miehe, C., Rosato, D., Kiefer, B.: Variational principles in dissipative electro-magneto-mechanics: a framework for the macro-modeling of functional materials. Int. J. Numer. Meth. Eng. 86(10), 1225–1276 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
- 40.Pao, Y.-H.: Electromagnetic forces in deformable continua. In: Nemat-Nasser, S. (ed.) Mechanics Today, vol. 4, chapter IV, pp. 209–305. Pergamon Press (1978)Google Scholar
- 41.Petra, C.G., Schenk, O., Anitescu, M.: Real-time stochastic optimization of complex energy systems on high-performance computers. IEEE Comput. Sci. Eng. 16(5), 32–42 (2014)CrossRefGoogle Scholar
- 42.Petra, C.G., Schenk, O., Lubin, M., Gärtner, K.: An augmented incomplete factorization approach for computing the Schur complement in stochastic optimization. SIAM J. Sci. Comput. 36(2), C139–C162 (2014)MathSciNetCrossRefGoogle Scholar
- 43.Ponte Castañeda, P., Galipeau, E.: Homogenization-based constitutive models for magnetorheological elastomers at finite strain. J. Mech. Phys. Solids 59(2), 194–215 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
- 44.Romeis, D., Metsch, P., Kästner, M., Saphiannikova, M.: Theoretical models for magneto-sensitive elastomers: a comparison between continuum and dipole approaches. Phys. Rev. E 95, 042501 (2017)CrossRefGoogle Scholar
- 45.Romeis, D., Toshchevikov, V., Saphiannikova, M.: Elongated micro-structures in magneto-sensitive elastomers: a dipolar mean field model. Soft Matter 12, 9364–9376 (2016)CrossRefGoogle Scholar
- 46.Rudykh, S., Bertoldi, K.: Stability of anisotropic magnetorheological elastomers in finite deformations: a micromechanical approach. J. Mech. Phys. Solids 61(4), 949–967 (2013)MathSciNetCrossRefGoogle Scholar
- 47.Saxena, P., Hossain, M., Steinmann, P.: A theory of finite deformation magneto-viscoelasticity. Int. J. Solids Struct. 50(24), 3886–3897 (2013)CrossRefGoogle Scholar
- 48.Saxena, P., Hossain, M., Steinmann, P.: Nonlinear magneto-viscoelasticity of transversally isotropic magneto-active polymers. Proc. R. Soc. Lond. A: Math. Phys. Eng. Sci. 470(2166), 20140082 (2014)CrossRefGoogle Scholar
- 49.Schubert, G.: Manufacture, Characterisation and Modelling of Magneto-rheological Elastomers. PhD thesis, University of Glasgow (2014)Google Scholar
- 50.Schümann, M., Borin, D.Y., Huang, S., Auernhammer, G.K., Müller, R., Odenbach, S.: A characterisation of the magnetically induced movement of ndfeb-particles in magnetorheological elastomers. Smart Mater. Struct. 26(9), 095018 (2017)CrossRefGoogle Scholar
- 51.Schümann, M., Gundermann, T., Odenbach, S.: Microscopic investigation of the reasons for field dependent changes of the properties of magnetic hybrid materials using x-ray micro tomography. Arch. Appl. Mech., submitted (2018)Google Scholar
- 52.Spieler, C., Kästner, M., Goldmann, J., Brummund, J., Ulbricht, V.: XFEM modeling and homogenization of magnetoactive composites. Acta Mech. 224(11), 2453–2469 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
- 53.Stark, S., Semenov, A.S., Balke, H.: On the boundary conditions for the vector potential formulation in electrostatics. Int. J. Numer. Meth. Eng. 102(11), 1704–1732 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
- 54.Stepanov, G., Borin, D.Y., Raikher, Y.L., Melenev, P., Perov, N.: Motion of ferroparticles inside the polymeric matrix in magnetoactive elastomers. J. Phys.: Condens. Matter 20(20), 204121 (2008)Google Scholar
- 55.Stepanov, G.V., Borin, D.Y., Kramarenko, E.Y., Bogdanov, V.V., Semerenko, D.A., Storozhenko, P.A.: Magnetoactive elastomer based on magnetically hard filler: synthesis and study of viscoelastic and damping properties. Polym. Sci. Ser. A 56(5), 603–613 (2014)CrossRefGoogle Scholar
- 56.Tian, T.F., Li, W.H., Deng, Y.M.: Sensing capabilities of graphite based MR elastomers. Smart Mater. Struct. 20(2), 025022 (2011)CrossRefGoogle Scholar
- 57.Vogel, F., Bustamante, R., Steinmann, P.: On some mixed variational principles in magneto-elastostatics. Int. J. Non-Linear Mech. 51, 157–169 (2013)CrossRefGoogle Scholar
- 58.Volkova, T., Böhm, V., Kaufhold, T., Popp, J., Becker, F., Borin, D., Stepanov, G., Zimmermann, K.: Motion behaviour of magneto-sensitive elastomers controlled by an external magnetic field for sensor applications. J. Magn. Magn. Mater. https://doi.org/10.1016/j.jmmm.2016.10.009 (2016)
- 59.Weeber, R., Kreissl, P., Holm, C.: Studying the field-controlled change of shape and elasticity of magnetic gels using particle-based simulations. Arch. Appl. Mech. https://doi.org/10.1007/s00419-018-1396-4 (2018)