Advertisement

Damage propagation in 2d beam lattices: 2. Design of an isotropic fault-tolerant lattice

  • Andrej CherkaevEmail author
  • Michael Ryvkin
Original
  • 32 Downloads

Abstract

The paper demonstrates a rational design of an isotropic heterogeneous beam lattice that is fault-tolerant and energy-absorbing. Combining triangular and hexagonal structures, we calculate elastic moduli of obtained hybrid heterogeneous structures; simulate the development of flaws in that composite lattice subjected to a uniform uniaxial deformation; investigate its damage evolution; measure various characteristics of damage that estimate fault tolerance; discuss the trade-off between stiffness and fault tolerance. A design is found that develops a cloud of small evenly spread flaws instead of a crack.

Keywords

Fault-tolerant lattice Beam lattice Evenly spread damage Brittle fracture 

Notes

Acknowledgements

The authors gratefully acknowledge support by the NDM, National Science Foundation, Award Number 1515125, and by Israel Science Foundation, Grant No. 1494/16.

References

  1. 1.
    Ajdari, A., Jahromi, B.H., Papadopoulos, J., Nayeb-Hashemi, H., Vaziri, A.: Hierarchical honeycombs with tailorable properties. Int. J. Solids Struct. 49(11–12), 1413–1419 (2012)CrossRefGoogle Scholar
  2. 2.
    Berger, J.B., Wadley, H.N., McMeeking, R.M.: Mechanical metamaterials at the theoretical limit of isotropic elastic stiffness. Nature 543(7646), 533–537 (2017)CrossRefGoogle Scholar
  3. 3.
    Bujny, M., Aulig, N., Olhofer, M., Duddeck, F.: Identification of optimal topologies for crashworthiness with the evolutionary level set method. Int. J. Crashworthiness (2017).  https://doi.org/10.1080/13588265.2017.1331493 CrossRefGoogle Scholar
  4. 4.
    Cherkaev, E., Cherkaev, A.: Principal compliance and robust optimal design. J. Elast. 72, 71–98 (2003). (also in: The Rational Spirit in Modern Continuum Mechanics, Essays and Papers Dedicated to the Memory of Clifford Ambrose Truesdell III, 2003) MathSciNetCrossRefGoogle Scholar
  5. 5.
    Cherkaev, E., Cherkaev, A.: Minimax optimization problem of structural design. Comput. Struct. 86, 1426–1435 (2008)CrossRefGoogle Scholar
  6. 6.
    Cherkaev, A., Cherkaev, E., Leelavanichkul, S.: Principle of optimization of structures against an impact. J. Phys. Confer. Ser. 319(1), 1–16 (2011)zbMATHGoogle Scholar
  7. 7.
    Cherkaev, A., Leelavanichkul, S.: An impact protective structure with bistable links. Int. J. Damage Mech. 21(5), 697–711 (2012)CrossRefGoogle Scholar
  8. 8.
    Cherkaev, A., Cherkaev, E., Slepyan, L.: Transition waves in bistable structures. I: delocalization of damage. J. Mech. Phys. Solids 53(2), 383–405 (2005)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Cherkaev, E., Cherkaev, A., Slepyan, L.: Dynamics of structures with bistable links. In: Vibration Problems ICOVP 2005, vol. 111, pp. 111–122. Springer (2007)Google Scholar
  10. 10.
    Cherkaev, A., Ryvkin, M.: Damage propagation in 2d beam lattices: 1. Uncertainty and assumptions. Arch. Mech. (2017). (in print) Google Scholar
  11. 11.
    Cherkaev, A., Slepyan, L.: Waiting element structures and stability under extension. Int. J. Damage Mech. 4(1), 58–82 (1995)CrossRefGoogle Scholar
  12. 12.
    Cherkaev, A., Vladimir Vinogradov, V., Leelavanishkul, S.: The waves of damage in elastic–plastic lattices with waiting links: design and simulation. Mech. Mater. 38, 748–756 (2005)CrossRefGoogle Scholar
  13. 13.
    Cherkaev, A.A., Zhornitskaya, L.: Protective structures with waiting links and their damage evolution. Multibody Syst. Dyn. J. 13(1), 53–67 (2005)CrossRefGoogle Scholar
  14. 14.
    Diaz, A.R., Bendsoe, M.P.: Shape optimization of multipurpose structures by homogenization method. Struct. Optim. 4, 17–22 (1992)CrossRefGoogle Scholar
  15. 15.
    Diaz, A.R., Soto C.A.: Lattice models for crash resistant design and optimization. In: Proceedings of 3rd World Congress of Structural and Multidisciplinary Optimization, Buffalo, New York, USA, 17–21 May 1999Google Scholar
  16. 16.
    Fleck, N.A., Qiu, X.: The damage tolerance of elastic–brittle, two-dimensional isotropic lattices. J. Mech. Phys. Solids 55(3), 562–588 (2007)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Fuchs, M.B.: Structures and Their Analysis. Springer, Basel (2016)CrossRefGoogle Scholar
  18. 18.
    Fuchs, M.B., Farhi, E.: Shape of stiffest controlled structures under unknown loads. Comput. Struct. 79(18), 1661–1670 (2001)CrossRefGoogle Scholar
  19. 19.
    Grenestedt, J.: Influence of wavy imperfections in cell walls on elastic stiffness of cellular solids. J. Mech. Phys. Solids 46(1), 29–50 (1998)CrossRefGoogle Scholar
  20. 20.
    Holnicki-Szulc, J., Knap, L.: Optimal design of adaptive structures for the best crashworthiness. In: Proceedings of 3rd World Congress of Structural and Multidisciplinary Optimization, Buffalo, New York, USA, pp. 17–21 (1999)Google Scholar
  21. 21.
    Holnicki, J., Knap, L.: Adaptive crashworthiness concept. Int. J. Impact Eng. 30(6), 639–663 (2004)CrossRefGoogle Scholar
  22. 22.
    Kucherov, L., Ryvkin, M.: Flaw nucleation in a brittle open-cell Kelvin foam. Int. J. Fract. 175(1), 79–86 (2012)CrossRefGoogle Scholar
  23. 23.
    Leelavanichkul, S., Cherkaev, A., Adams, D., Solzbacher, F.: Energy absorption of a helicoidal bistable structure. J. Mech. Mater. Struct. 5(2), 305–321 (2009)CrossRefGoogle Scholar
  24. 24.
    Lipperman, F., Ryvkin, M., Fuchs, M.B.: Fracture toughness of two-dimensional cellular material with periodic microstructure. Int. J. Fract. 146, 279–290 (2007)CrossRefGoogle Scholar
  25. 25.
    Lipperman, F., Ryvkin, M., Fuchs, M.B.: Nucleation of cracks in two-dimensional periodic cellular materials. Comput. Mech. 39(2), 127–139 (2007)CrossRefGoogle Scholar
  26. 26.
    Lipperman, F., Ryvkin, M., Fuchs, M.B.: Design of crack-resistant two-dimensional periodic cellular materials. J. Mech. Mater. Struct. 4(3), 441–457 (2009)CrossRefGoogle Scholar
  27. 27.
    Lurie, K.A.: Applied Optimal Control Theory of Distributed Systems, vol. 43. Springer, Berlin (2013)zbMATHGoogle Scholar
  28. 28.
    Pedersen, C.B.W.: Topology optimization of 2D-frame structures with path-dependent response. Int. J. Numer. Methods Eng. 57(10), 1471–1501 (2002)CrossRefGoogle Scholar
  29. 29.
    Quintana-Alonso, I., Fleck, N.A.: Fracture of brittle lattice materials: a review. In: Daniel, I.M., Gdoutos, E.E., Rajapakse, Y.D.S. (eds.) Major Accomplishments in Composite Materials and Sandwich Structures. Springer, Dordrecht (2009)Google Scholar
  30. 30.
    Salehian, A., Ibrahim, M., Seigler, T.M.: Damping in periodic structures: a continuum modeling approach. AIAA J. 52(3), 569–590 (2014)CrossRefGoogle Scholar
  31. 31.
    Slepyan, L., Cherkaev, A., Cherkaev, E.: Transition waves in bistable structures II: analytical solution, wave speed, and energy dissipation. J. Mech. Phys. Solids 53(2), 407–436 (2005)MathSciNetCrossRefGoogle Scholar
  32. 32.
    Soto, C.A.: Structural topology optimization for crashworthiness. Int. J. Crashworthiness 9(3), 277–283 (2004)CrossRefGoogle Scholar
  33. 33.
    Zargarian, A., Esfahanian, M., Kadkhodapour, J., Ziaei-Rad, S.: Numerical simulation of the fatigue behavior of additive manufactured titanium porous lattice structures. Mater. Sci. Eng. C 60, 339–347 (2016)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of UtahSalt Lake CityUSA
  2. 2.The Iby and Aladar Fleischman Faculty of Engineering, School of Mechanical EngineeringTel Aviv UniversityRamat AvivIsrael

Personalised recommendations